通过哈希在KV存储中实现高效更新

Yongkun Li, H. Chan, P. Lee, Yinlong Xu
{"title":"通过哈希在KV存储中实现高效更新","authors":"Yongkun Li, H. Chan, P. Lee, Yinlong Xu","doi":"10.1145/3340287","DOIUrl":null,"url":null,"abstract":"Persistent key-value (KV) stores mostly build on the Log-Structured Merge (LSM) tree for high write performance, yet the LSM-tree suffers from the inherently high I/O amplification. KV separation mitigates I/O amplification by storing only keys in the LSM-tree and values in separate storage. However, the current KV separation design remains inefficient under update-intensive workloads due to its high garbage collection (GC) overhead in value storage. We propose HashKV, which aims for high update performance atop KV separation under update-intensive workloads. HashKV uses hash-based data grouping, which deterministically maps values to storage space to make both updates and GC efficient. We further relax the restriction of such deterministic mappings via simple but useful design extensions. We extensively evaluate various design aspects of HashKV. We show that HashKV achieves 4.6× update throughput and 53.4% less write traffic compared to the current KV separation design. In addition, we demonstrate that we can integrate the design of HashKV with state-of-the-art KV stores and improve their respective performance.","PeriodicalId":273014,"journal":{"name":"ACM Transactions on Storage (TOS)","volume":"19 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":"{\"title\":\"Enabling Efficient Updates in KV Storage via Hashing\",\"authors\":\"Yongkun Li, H. Chan, P. Lee, Yinlong Xu\",\"doi\":\"10.1145/3340287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Persistent key-value (KV) stores mostly build on the Log-Structured Merge (LSM) tree for high write performance, yet the LSM-tree suffers from the inherently high I/O amplification. KV separation mitigates I/O amplification by storing only keys in the LSM-tree and values in separate storage. However, the current KV separation design remains inefficient under update-intensive workloads due to its high garbage collection (GC) overhead in value storage. We propose HashKV, which aims for high update performance atop KV separation under update-intensive workloads. HashKV uses hash-based data grouping, which deterministically maps values to storage space to make both updates and GC efficient. We further relax the restriction of such deterministic mappings via simple but useful design extensions. We extensively evaluate various design aspects of HashKV. We show that HashKV achieves 4.6× update throughput and 53.4% less write traffic compared to the current KV separation design. In addition, we demonstrate that we can integrate the design of HashKV with state-of-the-art KV stores and improve their respective performance.\",\"PeriodicalId\":273014,\"journal\":{\"name\":\"ACM Transactions on Storage (TOS)\",\"volume\":\"19 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Storage (TOS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3340287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Storage (TOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3340287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

摘要

持久键值(KV)存储主要构建在日志结构合并(LSM)树上,以获得较高的写性能,但是LSM树本身就存在高I/O放大的问题。KV分离通过仅在lsm树中存储键和在单独存储中存储值来减轻I/O放大。然而,当前的KV分离设计在更新密集型工作负载下仍然效率低下,因为它在值存储中的垃圾收集(GC)开销很高。我们提出HashKV,它的目标是在更新密集型工作负载下,在KV分离的基础上实现高更新性能。HashKV使用基于哈希的数据分组,它确定地将值映射到存储空间,以提高更新和GC效率。我们通过简单但有用的设计扩展进一步放宽了这种确定性映射的限制。我们广泛评估了HashKV的各个设计方面。我们表明,与当前的KV分离设计相比,HashKV实现了4.6倍的更新吞吐量和53.4%的写流量。此外,我们证明了我们可以将HashKV的设计与最先进的KV存储集成在一起,并提高它们各自的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enabling Efficient Updates in KV Storage via Hashing
Persistent key-value (KV) stores mostly build on the Log-Structured Merge (LSM) tree for high write performance, yet the LSM-tree suffers from the inherently high I/O amplification. KV separation mitigates I/O amplification by storing only keys in the LSM-tree and values in separate storage. However, the current KV separation design remains inefficient under update-intensive workloads due to its high garbage collection (GC) overhead in value storage. We propose HashKV, which aims for high update performance atop KV separation under update-intensive workloads. HashKV uses hash-based data grouping, which deterministically maps values to storage space to make both updates and GC efficient. We further relax the restriction of such deterministic mappings via simple but useful design extensions. We extensively evaluate various design aspects of HashKV. We show that HashKV achieves 4.6× update throughput and 53.4% less write traffic compared to the current KV separation design. In addition, we demonstrate that we can integrate the design of HashKV with state-of-the-art KV stores and improve their respective performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
WebAssembly-based Delta Sync for Cloud Storage Services DEFUSE: An Interface for Fast and Correct User Space File System Access Donag: Generating Efficient Patches and Diffs for Compressed Archives Building GC-free Key-value Store on HM-SMR Drives with ZoneFS Kangaroo: Theory and Practice of Caching Billions of Tiny Objects on Flash
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1