J. Yousafzai, M. Ager, Z. Cvetković, Peter Sollich
{"title":"判别和生成机器学习方法实现稳健的音素分类","authors":"J. Yousafzai, M. Ager, Z. Cvetković, Peter Sollich","doi":"10.1109/ITA.2008.4601091","DOIUrl":null,"url":null,"abstract":"Robustness of classification of isolated phoneme segments using discriminative and generative classifiers is investigated for the acoustic waveform and PLP speech representations. The two approaches used are support vector machines (SVMs) and mixtures of probabilistic PCA (MPPCA). While recognition in the PLP domain attains superb accuracy on clean data, it is significantly affected by mismatch between training and test noise levels. Classification in the high-dimensional acoustic waveform domain, on the other hand, is more robust in the presence of additive white Gaussian noise. We also show some results on the effects of custom-designed kernel functions for SVM classification in the acoustic waveform domain.","PeriodicalId":345196,"journal":{"name":"2008 Information Theory and Applications Workshop","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Discriminative and generative machine learning approaches towards robust phoneme classification\",\"authors\":\"J. Yousafzai, M. Ager, Z. Cvetković, Peter Sollich\",\"doi\":\"10.1109/ITA.2008.4601091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robustness of classification of isolated phoneme segments using discriminative and generative classifiers is investigated for the acoustic waveform and PLP speech representations. The two approaches used are support vector machines (SVMs) and mixtures of probabilistic PCA (MPPCA). While recognition in the PLP domain attains superb accuracy on clean data, it is significantly affected by mismatch between training and test noise levels. Classification in the high-dimensional acoustic waveform domain, on the other hand, is more robust in the presence of additive white Gaussian noise. We also show some results on the effects of custom-designed kernel functions for SVM classification in the acoustic waveform domain.\",\"PeriodicalId\":345196,\"journal\":{\"name\":\"2008 Information Theory and Applications Workshop\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Information Theory and Applications Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITA.2008.4601091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Information Theory and Applications Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2008.4601091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Discriminative and generative machine learning approaches towards robust phoneme classification
Robustness of classification of isolated phoneme segments using discriminative and generative classifiers is investigated for the acoustic waveform and PLP speech representations. The two approaches used are support vector machines (SVMs) and mixtures of probabilistic PCA (MPPCA). While recognition in the PLP domain attains superb accuracy on clean data, it is significantly affected by mismatch between training and test noise levels. Classification in the high-dimensional acoustic waveform domain, on the other hand, is more robust in the presence of additive white Gaussian noise. We also show some results on the effects of custom-designed kernel functions for SVM classification in the acoustic waveform domain.