发现学习对象的可用性特征

Alfredo Zapata, Víctor Hugo Menéndez Domínguez, Manuel E. Prieto
{"title":"发现学习对象的可用性特征","authors":"Alfredo Zapata, Víctor Hugo Menéndez Domínguez, Manuel E. Prieto","doi":"10.1109/ISDA.2009.184","DOIUrl":null,"url":null,"abstract":"Metadata is the key to describe Learning Objects. Through them, we can search and reuse these resources. However, there are pedagogical and usability characteristics that metadata do not normally contain. Sources of additional information such as activity log registers in repositories can help to specify such attributes. Data mining techniques allow identifying Learning Objects usability characteristics. This paper presents the results of applying a knowledge extraction methodology to Learning Objects through the use of four data sources: metadata, pedagogical quality evaluations, user’s profiles, and log files from Learning Objects management systems.","PeriodicalId":330324,"journal":{"name":"2009 Ninth International Conference on Intelligent Systems Design and Applications","volume":"83 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Discovering Learning Objects Usability Characteristics\",\"authors\":\"Alfredo Zapata, Víctor Hugo Menéndez Domínguez, Manuel E. Prieto\",\"doi\":\"10.1109/ISDA.2009.184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metadata is the key to describe Learning Objects. Through them, we can search and reuse these resources. However, there are pedagogical and usability characteristics that metadata do not normally contain. Sources of additional information such as activity log registers in repositories can help to specify such attributes. Data mining techniques allow identifying Learning Objects usability characteristics. This paper presents the results of applying a knowledge extraction methodology to Learning Objects through the use of four data sources: metadata, pedagogical quality evaluations, user’s profiles, and log files from Learning Objects management systems.\",\"PeriodicalId\":330324,\"journal\":{\"name\":\"2009 Ninth International Conference on Intelligent Systems Design and Applications\",\"volume\":\"83 9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Ninth International Conference on Intelligent Systems Design and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2009.184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2009.184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

元数据是描述学习对象的关键。通过它们,我们可以搜索和再利用这些资源。然而,元数据通常不包含教学和可用性特征。其他信息源(如存储库中的活动日志寄存器)可以帮助指定此类属性。数据挖掘技术允许识别学习对象的可用性特征。本文通过使用四种数据源(元数据、教学质量评估、用户档案和来自学习对象管理系统的日志文件),介绍了将知识提取方法应用于学习对象的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discovering Learning Objects Usability Characteristics
Metadata is the key to describe Learning Objects. Through them, we can search and reuse these resources. However, there are pedagogical and usability characteristics that metadata do not normally contain. Sources of additional information such as activity log registers in repositories can help to specify such attributes. Data mining techniques allow identifying Learning Objects usability characteristics. This paper presents the results of applying a knowledge extraction methodology to Learning Objects through the use of four data sources: metadata, pedagogical quality evaluations, user’s profiles, and log files from Learning Objects management systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EACImpute: An Evolutionary Algorithm for Clustering-Based Imputation An FPGA Based Arrhythmia Recognition System for Wearable Applications Knowledge Discovery Approaches for Early Detection of Decompensation Conditions in Heart Failure Patients Evaluating an Intelligent Business System with a Fuzzy Multi-criteria Approach Time Analysis of Forum Evolution as Support Tool for E-Moderating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1