Kiron Vijayasankar, Gopalan Sivathanu, S. Sundararaman, E. Zadok
{"title":"利用自恢复磁盘中的类型感知","authors":"Kiron Vijayasankar, Gopalan Sivathanu, S. Sundararaman, E. Zadok","doi":"10.1145/1314313.1314321","DOIUrl":null,"url":null,"abstract":"Data recoverability in the face of partial disk errors is an important prerequisite in modern storage. We have designed and implemented a prototype disk system that automatically ensures the integrity of stored data, and transparently recovers vital data in the event of integrity violations. We show that by using pointer knowledge, effective integrity assurance can be performed inside a block-based disk with negligible performance overheads. We also show how semantics-aware replication of blocks can help improve the recoverability of data in the event of partial disk errors with small space overheads. Our evaluation results show that for normal user workloads, our disk system has a performance overhead of only 1-5% compared to traditional disks.","PeriodicalId":413919,"journal":{"name":"ACM International Workshop on Storage Security And Survivability","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Exploiting type-awareness in a self-recovering disk\",\"authors\":\"Kiron Vijayasankar, Gopalan Sivathanu, S. Sundararaman, E. Zadok\",\"doi\":\"10.1145/1314313.1314321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data recoverability in the face of partial disk errors is an important prerequisite in modern storage. We have designed and implemented a prototype disk system that automatically ensures the integrity of stored data, and transparently recovers vital data in the event of integrity violations. We show that by using pointer knowledge, effective integrity assurance can be performed inside a block-based disk with negligible performance overheads. We also show how semantics-aware replication of blocks can help improve the recoverability of data in the event of partial disk errors with small space overheads. Our evaluation results show that for normal user workloads, our disk system has a performance overhead of only 1-5% compared to traditional disks.\",\"PeriodicalId\":413919,\"journal\":{\"name\":\"ACM International Workshop on Storage Security And Survivability\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM International Workshop on Storage Security And Survivability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1314313.1314321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM International Workshop on Storage Security And Survivability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1314313.1314321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploiting type-awareness in a self-recovering disk
Data recoverability in the face of partial disk errors is an important prerequisite in modern storage. We have designed and implemented a prototype disk system that automatically ensures the integrity of stored data, and transparently recovers vital data in the event of integrity violations. We show that by using pointer knowledge, effective integrity assurance can be performed inside a block-based disk with negligible performance overheads. We also show how semantics-aware replication of blocks can help improve the recoverability of data in the event of partial disk errors with small space overheads. Our evaluation results show that for normal user workloads, our disk system has a performance overhead of only 1-5% compared to traditional disks.