汉语语篇语义韵律结构协同学习的多层标注方案与计算模型

Yuan Jia
{"title":"汉语语篇语义韵律结构协同学习的多层标注方案与计算模型","authors":"Yuan Jia","doi":"10.1109/ICSCEE.2018.8538421","DOIUrl":null,"url":null,"abstract":"This paper presents a novel annotation scheme of Chinese discourse structures to model the complex interactions among grammar, semantics and phonology. The scheme mainly contains three layers, i.e., grammatical, semantic and prosodic layers. Within each layer, the representations of dependency relations, rhetorical structure, information structure, topic chain, prosodic boundaries and stress distributions are specified. Based on the scheme, a large scale corpus of transcribed speech data is constructed and annotated. We further propose a machine learning methodology to learn from the annotated corpus a computational representation of the internal structure of each layer and the interactions across different layers. Specifically, we employ the Recursive Neural Network (RNN) to model the fine-grained structure in natural language information, through learning a distributed representation of the structural units. The proposed annotation scheme and machine learning methodology to expected to underpin more effective and intelligent speech engineering and understanding technologies of the future.","PeriodicalId":265737,"journal":{"name":"2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE)","volume":"10 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multi-layered Annotation Scheme and Computational Model for Co-Learning Semantic and Prosodic Structures of Chinese Discourse\",\"authors\":\"Yuan Jia\",\"doi\":\"10.1109/ICSCEE.2018.8538421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel annotation scheme of Chinese discourse structures to model the complex interactions among grammar, semantics and phonology. The scheme mainly contains three layers, i.e., grammatical, semantic and prosodic layers. Within each layer, the representations of dependency relations, rhetorical structure, information structure, topic chain, prosodic boundaries and stress distributions are specified. Based on the scheme, a large scale corpus of transcribed speech data is constructed and annotated. We further propose a machine learning methodology to learn from the annotated corpus a computational representation of the internal structure of each layer and the interactions across different layers. Specifically, we employ the Recursive Neural Network (RNN) to model the fine-grained structure in natural language information, through learning a distributed representation of the structural units. The proposed annotation scheme and machine learning methodology to expected to underpin more effective and intelligent speech engineering and understanding technologies of the future.\",\"PeriodicalId\":265737,\"journal\":{\"name\":\"2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE)\",\"volume\":\"10 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSCEE.2018.8538421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCEE.2018.8538421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的汉语语篇结构标注方案,以模拟语法、语义和语音之间复杂的相互作用。该方案主要包含三个层面,即语法、语义和韵律层面。在每一层中,分别规定了依存关系、修辞结构、信息结构、话题链、韵律边界和重音分布的表示。基于该方案,构建了一个大规模的语音转录数据语料库并进行了标注。我们进一步提出了一种机器学习方法,从带注释的语料库中学习每层内部结构的计算表示以及不同层之间的相互作用。具体来说,我们使用递归神经网络(RNN)通过学习结构单元的分布式表示来对自然语言信息中的细粒度结构进行建模。提出的标注方案和机器学习方法有望为未来更有效、更智能的语音工程和理解技术奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Multi-layered Annotation Scheme and Computational Model for Co-Learning Semantic and Prosodic Structures of Chinese Discourse
This paper presents a novel annotation scheme of Chinese discourse structures to model the complex interactions among grammar, semantics and phonology. The scheme mainly contains three layers, i.e., grammatical, semantic and prosodic layers. Within each layer, the representations of dependency relations, rhetorical structure, information structure, topic chain, prosodic boundaries and stress distributions are specified. Based on the scheme, a large scale corpus of transcribed speech data is constructed and annotated. We further propose a machine learning methodology to learn from the annotated corpus a computational representation of the internal structure of each layer and the interactions across different layers. Specifically, we employ the Recursive Neural Network (RNN) to model the fine-grained structure in natural language information, through learning a distributed representation of the structural units. The proposed annotation scheme and machine learning methodology to expected to underpin more effective and intelligent speech engineering and understanding technologies of the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NotPetya: Cyber Attack Prevention through Awareness via Gamification Accurate Disparity Map Estimation Based on Edge-preserving Filter Extended User Centered Design (UCD) Process in the Aspect of Human Computer Interaction A Review of Evidence Extraction Techniques in Big Data Environment Challenges and Benefits of Modern Code Review-Systematic Literature Review Protocol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1