最小化映射误差的核主成分分析贪心逼近

Peng Cheng, W. Li, P. Ogunbona
{"title":"最小化映射误差的核主成分分析贪心逼近","authors":"Peng Cheng, W. Li, P. Ogunbona","doi":"10.1109/DICTA.2009.57","DOIUrl":null,"url":null,"abstract":"In this paper we propose a new kernel PCA (KPCA) speed-up algorithm that aims to find a reduced KPCA to approximate the kernel mapping. The algorithm works by greedily choosing a subset of the training samples that minimizes the mean square error of the kernel mapping between the original KPCA and the reduced KPCA. Experimental results have shown that the proposed algorithm is more efficient in computation and effective with lower mapping errors than previous algorithms.","PeriodicalId":277395,"journal":{"name":"2009 Digital Image Computing: Techniques and Applications","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Greedy Approximation of Kernel PCA by Minimizing the Mapping Error\",\"authors\":\"Peng Cheng, W. Li, P. Ogunbona\",\"doi\":\"10.1109/DICTA.2009.57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a new kernel PCA (KPCA) speed-up algorithm that aims to find a reduced KPCA to approximate the kernel mapping. The algorithm works by greedily choosing a subset of the training samples that minimizes the mean square error of the kernel mapping between the original KPCA and the reduced KPCA. Experimental results have shown that the proposed algorithm is more efficient in computation and effective with lower mapping errors than previous algorithms.\",\"PeriodicalId\":277395,\"journal\":{\"name\":\"2009 Digital Image Computing: Techniques and Applications\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Digital Image Computing: Techniques and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2009.57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2009.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种新的核主成分分析(KPCA)加速算法,该算法旨在找到一个简化的核主成分分析来近似核映射。该算法的工作原理是,贪婪地选择训练样本的一个子集,使原始KPCA和简化后的KPCA之间的核映射的均方误差最小化。实验结果表明,该算法具有较好的计算效率和较低的映射误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Greedy Approximation of Kernel PCA by Minimizing the Mapping Error
In this paper we propose a new kernel PCA (KPCA) speed-up algorithm that aims to find a reduced KPCA to approximate the kernel mapping. The algorithm works by greedily choosing a subset of the training samples that minimizes the mean square error of the kernel mapping between the original KPCA and the reduced KPCA. Experimental results have shown that the proposed algorithm is more efficient in computation and effective with lower mapping errors than previous algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Video Surveillance: Legally Blind? Mixed Pixel Analysis for Flood Mapping Using Extended Support Vector Machine 3D Reconstruction of Patient Specific Bone Models from 2D Radiographs for Image Guided Orthopedic Surgery Improved Single Image Dehazing Using Geometry Crowd Counting Using Multiple Local Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1