Javaria Hameed, Rabiya Khalid, M. Javed, Sakeena Javaid, Sheeraz Ahmed, N. Javaid
{"title":"基于逻辑回归的智能家居短期电价和负荷预测增强分类","authors":"Javaria Hameed, Rabiya Khalid, M. Javed, Sakeena Javaid, Sheeraz Ahmed, N. Javaid","doi":"10.1109/iCoMET48670.2020.9074059","DOIUrl":null,"url":null,"abstract":"In this paper, an accurate electricity load and price forecasting model has been proposed, which consists of feature engineering and classification. To remove irrelevant features, Decision Tree (DT) and Recursive Feature Elimination (RFE) are used. Features are extracted through Mutual Information (MI) after removing uncertainty. In order to attain accurate electricity load and price forecasting, Enhanced Logistic Regression (ELR) classifier is proposed. Simulation results testify that accuracy of ELR is better than Logistic Regression (LR) and MultiLayer Percepton (MLP). ELR beats LR and MLP by 0.26% and 7.287% in load forecasting, whereas, it outperforms LR and MLP in price forecasting by 1.413% and 3.057%, respectively. Smart* dataset is used, which contains the data of residential sector of Western Massachusetts. Prediction performance is evaluated by using Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE).","PeriodicalId":431051,"journal":{"name":"2020 3rd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Enhanced Classification with Logistic Regression for Short Term Price and Load Forecasting in Smart Homes\",\"authors\":\"Javaria Hameed, Rabiya Khalid, M. Javed, Sakeena Javaid, Sheeraz Ahmed, N. Javaid\",\"doi\":\"10.1109/iCoMET48670.2020.9074059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an accurate electricity load and price forecasting model has been proposed, which consists of feature engineering and classification. To remove irrelevant features, Decision Tree (DT) and Recursive Feature Elimination (RFE) are used. Features are extracted through Mutual Information (MI) after removing uncertainty. In order to attain accurate electricity load and price forecasting, Enhanced Logistic Regression (ELR) classifier is proposed. Simulation results testify that accuracy of ELR is better than Logistic Regression (LR) and MultiLayer Percepton (MLP). ELR beats LR and MLP by 0.26% and 7.287% in load forecasting, whereas, it outperforms LR and MLP in price forecasting by 1.413% and 3.057%, respectively. Smart* dataset is used, which contains the data of residential sector of Western Massachusetts. Prediction performance is evaluated by using Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE).\",\"PeriodicalId\":431051,\"journal\":{\"name\":\"2020 3rd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 3rd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iCoMET48670.2020.9074059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 3rd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iCoMET48670.2020.9074059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhanced Classification with Logistic Regression for Short Term Price and Load Forecasting in Smart Homes
In this paper, an accurate electricity load and price forecasting model has been proposed, which consists of feature engineering and classification. To remove irrelevant features, Decision Tree (DT) and Recursive Feature Elimination (RFE) are used. Features are extracted through Mutual Information (MI) after removing uncertainty. In order to attain accurate electricity load and price forecasting, Enhanced Logistic Regression (ELR) classifier is proposed. Simulation results testify that accuracy of ELR is better than Logistic Regression (LR) and MultiLayer Percepton (MLP). ELR beats LR and MLP by 0.26% and 7.287% in load forecasting, whereas, it outperforms LR and MLP in price forecasting by 1.413% and 3.057%, respectively. Smart* dataset is used, which contains the data of residential sector of Western Massachusetts. Prediction performance is evaluated by using Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE).