波能转换系统阵列实验活动概述

N. Faedo, Y. Peña-Sanchez, E. Pasta, G. Papini, F. Mosquera, Francesco Ferri
{"title":"波能转换系统阵列实验活动概述","authors":"N. Faedo, Y. Peña-Sanchez, E. Pasta, G. Papini, F. Mosquera, Francesco Ferri","doi":"10.36688/ewtec-2023-379","DOIUrl":null,"url":null,"abstract":"It is already well-known that the vast energy available in ocean waves can provide a massive contribution towards effective decarbonisation. Nonetheless, due to the irregular reciprocating motion of ocean waves, convergence towards a single type of technology becomes rather difficult, and tailored research, aiming at ultimately providing reliable WEC systems, is still required to achieve commercialisation. \nOnce a given concept is established, numerical models become almost automatically required for a (very) large variety of tasks, including e.g. dynamical and performance assessment, control technology, geometry optimisation, and mooring design, among others. Depending on the requirements associated with a specific task, different types of models are used, with very different levels of complexity (both computational and analytical) and fidelity. For instance, a fully nonlinear estimation of the hydrodynamic response of a WEC would often require high-fidelity numerical modelling techniques, based on e.g. computational fluid-dynamics (CFD), while control applications prefer analytical expressions able to capture the main underlying dynamics in a simplified form. \nRegardless of the associated complexity, validation is always required for the reliable utilisation of a specific model for a given application, with experimental validation being the most valuable tool to secure this objective. In recent years, different initiatives were put in place, aiming at the identification of numerical model accuracy through a set of widely available case studies. For instance, the OES-Task 10 has been running a number of experiments followed by blind numerical model validations for several single-body wave energy converters. While the proposed methodologies proved to be efficient, the cases under study are all focused on single-body devices. \nSince the sector is slowly approaching a pre-commercial stage, it is important to prove the capabilities of numerical models also for farm configurations which are, ultimately, the way in which WEC systems will be effectively deployed. Motivated by this, we present, in this paper, an overview of an experimental campaign performed at Aalborg University during the period of September-October 2021, where 8 different array layouts of up to 5 devices have been tested, using a 1:20 prototype of the Wavestar WEC system as a baseline device (see PDF file for reference). Data has been collected systematically for regular and irregular wave conditions, including e.g. free-surface elevation at different points in the wave tank (with 19 wave probes in place), effective wave excitation forces acting on each device and layout, and associated motion variables. Furthermore, each different layout has been also tested under (reactive) controlled conditions, providing experimental data on PTO forces and associated motion (i.e. under controlled conditions). The results of this experimental campaign will be available as part of an Open-Access dataset, being an extremely valuable tool for reliable modelling within the WEC research/industrial community. \nThis paper intends to provide a detailed account of the technical aspects concerning the full experimental campaign, including setup, test design, synergies between collected data, and examples of how these results can be used to validate a variety of models, from different input/output points, depending on the requirement of each specific application.","PeriodicalId":201789,"journal":{"name":"Proceedings of the European Wave and Tidal Energy Conference","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overview of an experimental campaign for arrays of wave energy conversion systems\",\"authors\":\"N. Faedo, Y. Peña-Sanchez, E. Pasta, G. Papini, F. Mosquera, Francesco Ferri\",\"doi\":\"10.36688/ewtec-2023-379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is already well-known that the vast energy available in ocean waves can provide a massive contribution towards effective decarbonisation. Nonetheless, due to the irregular reciprocating motion of ocean waves, convergence towards a single type of technology becomes rather difficult, and tailored research, aiming at ultimately providing reliable WEC systems, is still required to achieve commercialisation. \\nOnce a given concept is established, numerical models become almost automatically required for a (very) large variety of tasks, including e.g. dynamical and performance assessment, control technology, geometry optimisation, and mooring design, among others. Depending on the requirements associated with a specific task, different types of models are used, with very different levels of complexity (both computational and analytical) and fidelity. For instance, a fully nonlinear estimation of the hydrodynamic response of a WEC would often require high-fidelity numerical modelling techniques, based on e.g. computational fluid-dynamics (CFD), while control applications prefer analytical expressions able to capture the main underlying dynamics in a simplified form. \\nRegardless of the associated complexity, validation is always required for the reliable utilisation of a specific model for a given application, with experimental validation being the most valuable tool to secure this objective. In recent years, different initiatives were put in place, aiming at the identification of numerical model accuracy through a set of widely available case studies. For instance, the OES-Task 10 has been running a number of experiments followed by blind numerical model validations for several single-body wave energy converters. While the proposed methodologies proved to be efficient, the cases under study are all focused on single-body devices. \\nSince the sector is slowly approaching a pre-commercial stage, it is important to prove the capabilities of numerical models also for farm configurations which are, ultimately, the way in which WEC systems will be effectively deployed. Motivated by this, we present, in this paper, an overview of an experimental campaign performed at Aalborg University during the period of September-October 2021, where 8 different array layouts of up to 5 devices have been tested, using a 1:20 prototype of the Wavestar WEC system as a baseline device (see PDF file for reference). Data has been collected systematically for regular and irregular wave conditions, including e.g. free-surface elevation at different points in the wave tank (with 19 wave probes in place), effective wave excitation forces acting on each device and layout, and associated motion variables. Furthermore, each different layout has been also tested under (reactive) controlled conditions, providing experimental data on PTO forces and associated motion (i.e. under controlled conditions). The results of this experimental campaign will be available as part of an Open-Access dataset, being an extremely valuable tool for reliable modelling within the WEC research/industrial community. \\nThis paper intends to provide a detailed account of the technical aspects concerning the full experimental campaign, including setup, test design, synergies between collected data, and examples of how these results can be used to validate a variety of models, from different input/output points, depending on the requirement of each specific application.\",\"PeriodicalId\":201789,\"journal\":{\"name\":\"Proceedings of the European Wave and Tidal Energy Conference\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the European Wave and Tidal Energy Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36688/ewtec-2023-379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the European Wave and Tidal Energy Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36688/ewtec-2023-379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,海浪中蕴含的巨大能量可以为有效的脱碳做出巨大贡献。然而,由于海浪的不规则往复运动,向单一类型的技术融合变得相当困难,并且为了最终提供可靠的WEC系统,仍然需要进行量身定制的研究,以实现商业化。一旦一个给定的概念建立起来,数值模型几乎自动成为(非常)各种任务的必要条件,包括动态和性能评估、控制技术、几何优化和系泊设计等。根据与特定任务相关的需求,使用不同类型的模型,具有非常不同的复杂性(计算性和分析性)和保真度。例如,对WEC的水动力响应进行完全非线性估计通常需要基于计算流体动力学(CFD)等高保真数值建模技术,而控制应用更喜欢能够以简化形式捕捉主要潜在动力学的解析表达式。无论相关的复杂性如何,对于给定应用程序的特定模型的可靠利用总是需要验证的,而实验验证是确保这一目标的最有价值的工具。近年来,采取了不同的措施,旨在通过一系列广泛可用的案例研究来确定数值模型的准确性。例如,OES-Task 10已经运行了许多实验,随后对几个单体波能转换器进行了盲数值模型验证。虽然所提出的方法被证明是有效的,但正在研究的案例都集中在单体设备上。由于该行业正慢慢接近商业化前阶段,因此重要的是要证明数值模型在农场配置方面的能力,这最终将是WEC系统有效部署的方式。受此启发,我们在本文中概述了2021年9月至10月期间在奥尔堡大学进行的一项实验活动,其中使用Wavestar WEC系统的1:20原型作为基准设备,测试了多达5个设备的8种不同阵列布局(参见PDF文件以供参考)。系统地收集了规则和不规则波浪条件的数据,包括波浪槽中不同点的自由水面高程(有19个波浪探头),作用于每个设备和布局的有效波浪激励力,以及相关的运动变量。此外,每种不同的布局也在(反应性)受控条件下进行了测试,提供了PTO力和相关运动(即受控条件下)的实验数据。这项实验活动的结果将作为开放获取数据集的一部分,成为WEC研究/工业社区中可靠建模的极有价值的工具。本文旨在提供有关完整实验活动的技术方面的详细说明,包括设置,测试设计,收集数据之间的协同作用,以及如何使用这些结果来验证各种模型的示例,从不同的输入/输出点,取决于每个特定应用的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Overview of an experimental campaign for arrays of wave energy conversion systems
It is already well-known that the vast energy available in ocean waves can provide a massive contribution towards effective decarbonisation. Nonetheless, due to the irregular reciprocating motion of ocean waves, convergence towards a single type of technology becomes rather difficult, and tailored research, aiming at ultimately providing reliable WEC systems, is still required to achieve commercialisation. Once a given concept is established, numerical models become almost automatically required for a (very) large variety of tasks, including e.g. dynamical and performance assessment, control technology, geometry optimisation, and mooring design, among others. Depending on the requirements associated with a specific task, different types of models are used, with very different levels of complexity (both computational and analytical) and fidelity. For instance, a fully nonlinear estimation of the hydrodynamic response of a WEC would often require high-fidelity numerical modelling techniques, based on e.g. computational fluid-dynamics (CFD), while control applications prefer analytical expressions able to capture the main underlying dynamics in a simplified form. Regardless of the associated complexity, validation is always required for the reliable utilisation of a specific model for a given application, with experimental validation being the most valuable tool to secure this objective. In recent years, different initiatives were put in place, aiming at the identification of numerical model accuracy through a set of widely available case studies. For instance, the OES-Task 10 has been running a number of experiments followed by blind numerical model validations for several single-body wave energy converters. While the proposed methodologies proved to be efficient, the cases under study are all focused on single-body devices. Since the sector is slowly approaching a pre-commercial stage, it is important to prove the capabilities of numerical models also for farm configurations which are, ultimately, the way in which WEC systems will be effectively deployed. Motivated by this, we present, in this paper, an overview of an experimental campaign performed at Aalborg University during the period of September-October 2021, where 8 different array layouts of up to 5 devices have been tested, using a 1:20 prototype of the Wavestar WEC system as a baseline device (see PDF file for reference). Data has been collected systematically for regular and irregular wave conditions, including e.g. free-surface elevation at different points in the wave tank (with 19 wave probes in place), effective wave excitation forces acting on each device and layout, and associated motion variables. Furthermore, each different layout has been also tested under (reactive) controlled conditions, providing experimental data on PTO forces and associated motion (i.e. under controlled conditions). The results of this experimental campaign will be available as part of an Open-Access dataset, being an extremely valuable tool for reliable modelling within the WEC research/industrial community. This paper intends to provide a detailed account of the technical aspects concerning the full experimental campaign, including setup, test design, synergies between collected data, and examples of how these results can be used to validate a variety of models, from different input/output points, depending on the requirement of each specific application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Open Sea Trial of a Wave-Energy Converter at Tuticorin Port – Challenges comprehensive assessment tool for low-TRL current energy converters Wave energy communication and social opposition Choosing wave energy devices for community-led marine energy development Tidal turbulence in medium depth water, primarily a model study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1