基于直觉模糊评价的随机梯度下降与辍学算法的广义网络模型

Plamena Yovcheva, S. Sotirov
{"title":"基于直觉模糊评价的随机梯度下降与辍学算法的广义网络模型","authors":"Plamena Yovcheva, S. Sotirov","doi":"10.7546/NIFS.2020.26.4.80-89","DOIUrl":null,"url":null,"abstract":"In the paper, we consider a stochastic gradient descent algorithm in combination with a dropout method. We used the theory of intuitionistic fuzzy sets for the assessment of the equivalence of the respective assessment units. We also consider a degree of uncertainty when the information is not enough.","PeriodicalId":433687,"journal":{"name":"Notes on Intuitionistic Fuzzy Sets","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generalized net model of the stochastic gradient descent and dropout algorithm with intuitionistic fuzzy evaluations\",\"authors\":\"Plamena Yovcheva, S. Sotirov\",\"doi\":\"10.7546/NIFS.2020.26.4.80-89\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper, we consider a stochastic gradient descent algorithm in combination with a dropout method. We used the theory of intuitionistic fuzzy sets for the assessment of the equivalence of the respective assessment units. We also consider a degree of uncertainty when the information is not enough.\",\"PeriodicalId\":433687,\"journal\":{\"name\":\"Notes on Intuitionistic Fuzzy Sets\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Notes on Intuitionistic Fuzzy Sets\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/NIFS.2020.26.4.80-89\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notes on Intuitionistic Fuzzy Sets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/NIFS.2020.26.4.80-89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了一种结合dropout方法的随机梯度下降算法。利用直觉模糊集理论对各评价单元的等价性进行评价。当信息不充分时,我们也会考虑一定程度的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A generalized net model of the stochastic gradient descent and dropout algorithm with intuitionistic fuzzy evaluations
In the paper, we consider a stochastic gradient descent algorithm in combination with a dropout method. We used the theory of intuitionistic fuzzy sets for the assessment of the equivalence of the respective assessment units. We also consider a degree of uncertainty when the information is not enough.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interpreting the results of InterCriteria Analysis: Pareto principle at work n-Dimensional intuitionistic fuzzy index matrix representation of multidimensional data partitioning methods InterCriteria Analysis with weight coefficients of objects or criteria Intuitionistic fuzzy neural network with filtering functions. An index matrix interpretation Evaluating the performance of catalyst and feedstocks in the fluid catalytic cracking process: Application of InterCriteria Analysis with weight coefficients of the criteria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1