渤海油田海上热力井综合防腐技术研究与应用

Hongyu Wang, Xiaodong Han, Qiuxia Wang, Hongwen Zhang, Hao Liu, Cheng Wang, Hua Zhang, Peng Dou, Jia Wen
{"title":"渤海油田海上热力井综合防腐技术研究与应用","authors":"Hongyu Wang, Xiaodong Han, Qiuxia Wang, Hongwen Zhang, Hao Liu, Cheng Wang, Hua Zhang, Peng Dou, Jia Wen","doi":"10.2523/iptc-23014-ea","DOIUrl":null,"url":null,"abstract":"\n Multi-component thermal fluid stimulation has been conducted in Bohai Oilfield for about ten years and at the early stage of the pilot, the corrosion of the thermal fluid injection tubing is severe with the existence of the oxygen and the carbon dioxide under high temperature conditions, which result in damage of the insulation tubing, increase of the production cost and even unwanted workover.\n For solving the corrosion problem and extending the working life of the tubing, the corrosion mechanisms is researched and analyzed at the first place. XRD and SEM is applied for analyzing the corrosion product. The results show that the corrosion is mainly caused by the high temperature carbon dioxide and vestigial oxygen. The high fluid flowing velocity and variable inner diameter of the insulation tubing also accelerate the corrosion process. Then, further study of corrosion behavior and corrosion prevention technology are proceeded.\n Corrosion behavior study is carried out through indoor experiment. The results indicate that steel corrosion rate would reach the maximum value at the temperature of about 80 centigrade. At low temperature range, the corrosion is mainly dominated by CO2, and at high temperature range, the corrosion is mainly dominated by O2. For O2 corrosion at the conditions of about 370 centigrade and 15MPa, if the O2 concentration is below 1000 ppm, the corrosion rate would be lower than 0.076mm/a and when the concentration reaches about 1%, the corrosion rate would rapidly increase to be about 2.38mm/a. Based on the analysis above, high temperature corrosion inhibitor is researched and selected. The inhibition efficiency of the optimized inhibitor could be higher than 90% which could meet the technical requirement for corrosion prevention. For further increasing the efficiency of the corrosion prevention, tubing with higher corrosion resistance is used. For the existence of the CO2 and O2 in the inner tubing during the injection process, the selected corrosion inhibitor is injected before the thermal fluid for forming the protective film at the inner side. And for the annular space, high purity Nitrogen which is higher than 99.9% is injected for lowering its O2 concentration.\n Till now, the comprehensive corrosion prevention technology has been applied for field test for nearly 30 well times. The corrosion problem has been greatly solved, the corrosion rate is lower than 0.1mm/a and no severe corrosion occurs during the thermal fluid injection process. Its successful application would provide a guidance and technical support for the subsequent offshore thermal exploitation.","PeriodicalId":283978,"journal":{"name":"Day 1 Wed, March 01, 2023","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research and Application of the Comprehensive Corrosion Prevention Technology for Offshore Thermal Wells in Bohai Oilfield\",\"authors\":\"Hongyu Wang, Xiaodong Han, Qiuxia Wang, Hongwen Zhang, Hao Liu, Cheng Wang, Hua Zhang, Peng Dou, Jia Wen\",\"doi\":\"10.2523/iptc-23014-ea\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Multi-component thermal fluid stimulation has been conducted in Bohai Oilfield for about ten years and at the early stage of the pilot, the corrosion of the thermal fluid injection tubing is severe with the existence of the oxygen and the carbon dioxide under high temperature conditions, which result in damage of the insulation tubing, increase of the production cost and even unwanted workover.\\n For solving the corrosion problem and extending the working life of the tubing, the corrosion mechanisms is researched and analyzed at the first place. XRD and SEM is applied for analyzing the corrosion product. The results show that the corrosion is mainly caused by the high temperature carbon dioxide and vestigial oxygen. The high fluid flowing velocity and variable inner diameter of the insulation tubing also accelerate the corrosion process. Then, further study of corrosion behavior and corrosion prevention technology are proceeded.\\n Corrosion behavior study is carried out through indoor experiment. The results indicate that steel corrosion rate would reach the maximum value at the temperature of about 80 centigrade. At low temperature range, the corrosion is mainly dominated by CO2, and at high temperature range, the corrosion is mainly dominated by O2. For O2 corrosion at the conditions of about 370 centigrade and 15MPa, if the O2 concentration is below 1000 ppm, the corrosion rate would be lower than 0.076mm/a and when the concentration reaches about 1%, the corrosion rate would rapidly increase to be about 2.38mm/a. Based on the analysis above, high temperature corrosion inhibitor is researched and selected. The inhibition efficiency of the optimized inhibitor could be higher than 90% which could meet the technical requirement for corrosion prevention. For further increasing the efficiency of the corrosion prevention, tubing with higher corrosion resistance is used. For the existence of the CO2 and O2 in the inner tubing during the injection process, the selected corrosion inhibitor is injected before the thermal fluid for forming the protective film at the inner side. And for the annular space, high purity Nitrogen which is higher than 99.9% is injected for lowering its O2 concentration.\\n Till now, the comprehensive corrosion prevention technology has been applied for field test for nearly 30 well times. The corrosion problem has been greatly solved, the corrosion rate is lower than 0.1mm/a and no severe corrosion occurs during the thermal fluid injection process. Its successful application would provide a guidance and technical support for the subsequent offshore thermal exploitation.\",\"PeriodicalId\":283978,\"journal\":{\"name\":\"Day 1 Wed, March 01, 2023\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Wed, March 01, 2023\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2523/iptc-23014-ea\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Wed, March 01, 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2523/iptc-23014-ea","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多组分热流体技术在渤海油田已经开展了十年左右,在试验初期,由于高温条件下氧气和二氧化碳的存在,热流体注入管腐蚀严重,导致保温管损坏,生产成本增加,甚至造成不必要的修井。为了解决腐蚀问题,延长油管的使用寿命,首先要研究和分析腐蚀机理。应用 XRD 和 SEM 分析腐蚀产物。结果表明,腐蚀主要是由高温二氧化碳和残余氧气引起的。较高的流体流速和绝缘管的不同内径也加速了腐蚀过程。随后,对腐蚀行为和防腐蚀技术进行了进一步研究。腐蚀行为研究是通过室内实验进行的。结果表明,钢的腐蚀速率在温度约为 80 摄氏度时达到最大值。在低温范围内,腐蚀主要以 CO2 为主,而在高温范围内,腐蚀主要以 O2 为主。在约 370 摄氏度和 15MPa 条件下的 O2 腐蚀中,如果 O2 浓度低于 1000 ppm,腐蚀速率将低于 0.076mm/a,当浓度达到约 1%时,腐蚀速率将迅速增加到约 2.38mm/a。根据上述分析,研究并选择了高温缓蚀剂。优化后的缓蚀剂的缓蚀效率可达 90%以上,满足了防腐蚀的技术要求。为进一步提高防腐蚀效率,使用了耐腐蚀性更强的管材。针对注入过程中内层油管中存在 CO2 和 O2 的情况,在导热油注入前注入选定的缓蚀剂,以便在内层形成保护膜。而对于环形空间,则注入纯度高于 99.9% 的高纯氮气,以降低其氧气浓度。截至目前,该综合防腐蚀技术已进行了近 30 井次的现场试验。大大解决了腐蚀问题,腐蚀率低于 0.1mm/a,在注入热流体过程中未发生严重腐蚀。它的成功应用将为后续的海上热力开采提供指导和技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research and Application of the Comprehensive Corrosion Prevention Technology for Offshore Thermal Wells in Bohai Oilfield
Multi-component thermal fluid stimulation has been conducted in Bohai Oilfield for about ten years and at the early stage of the pilot, the corrosion of the thermal fluid injection tubing is severe with the existence of the oxygen and the carbon dioxide under high temperature conditions, which result in damage of the insulation tubing, increase of the production cost and even unwanted workover. For solving the corrosion problem and extending the working life of the tubing, the corrosion mechanisms is researched and analyzed at the first place. XRD and SEM is applied for analyzing the corrosion product. The results show that the corrosion is mainly caused by the high temperature carbon dioxide and vestigial oxygen. The high fluid flowing velocity and variable inner diameter of the insulation tubing also accelerate the corrosion process. Then, further study of corrosion behavior and corrosion prevention technology are proceeded. Corrosion behavior study is carried out through indoor experiment. The results indicate that steel corrosion rate would reach the maximum value at the temperature of about 80 centigrade. At low temperature range, the corrosion is mainly dominated by CO2, and at high temperature range, the corrosion is mainly dominated by O2. For O2 corrosion at the conditions of about 370 centigrade and 15MPa, if the O2 concentration is below 1000 ppm, the corrosion rate would be lower than 0.076mm/a and when the concentration reaches about 1%, the corrosion rate would rapidly increase to be about 2.38mm/a. Based on the analysis above, high temperature corrosion inhibitor is researched and selected. The inhibition efficiency of the optimized inhibitor could be higher than 90% which could meet the technical requirement for corrosion prevention. For further increasing the efficiency of the corrosion prevention, tubing with higher corrosion resistance is used. For the existence of the CO2 and O2 in the inner tubing during the injection process, the selected corrosion inhibitor is injected before the thermal fluid for forming the protective film at the inner side. And for the annular space, high purity Nitrogen which is higher than 99.9% is injected for lowering its O2 concentration. Till now, the comprehensive corrosion prevention technology has been applied for field test for nearly 30 well times. The corrosion problem has been greatly solved, the corrosion rate is lower than 0.1mm/a and no severe corrosion occurs during the thermal fluid injection process. Its successful application would provide a guidance and technical support for the subsequent offshore thermal exploitation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Proper Well Spacings – A Supplementary Method to Maximize The Gulf of Thailand Development Project Value Seismic Driven Machine Learning to Improve Precision and Accelerate Screening Shallow Gas Potentials in Tunu Shallow Gas Zone, Mahakam Delta, Indonesia Rejuvenating Waterflood Reservoir in a Complex Geological Setting of a Matured Brown Field Intelligent Prediction of Downhole Drillstring Vibrations in Horizontal Wells by Employing Artificial Neural Network Sand Fill Clean-Out on Wireline Enables Access to Additional Perforation Zones in Gas Well Producer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1