{"title":"在光线追踪参数曲面上","authors":"Dan Toth","doi":"10.1145/325334.325233","DOIUrl":null,"url":null,"abstract":"A new method for ray tracing parametric surfaces is presented. The new algorithm solves the ray surface intersection directly using multivariate Newton iteration. This provides enough generality to render surfaces which could not be ray traced using existing methods. To overcome the problem of finding a starting point for the Newton algorithm, techniques from Interval Analysis are employed. The results are presented in terms of solving a general nonlinear system of equations f(x)= 0, and thus can be extended to a large class of problems which arise in computer graphics.","PeriodicalId":163416,"journal":{"name":"Proceedings of the 12th annual conference on Computer graphics and interactive techniques","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1985-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"196","resultStr":"{\"title\":\"On ray tracing parametric surfaces\",\"authors\":\"Dan Toth\",\"doi\":\"10.1145/325334.325233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new method for ray tracing parametric surfaces is presented. The new algorithm solves the ray surface intersection directly using multivariate Newton iteration. This provides enough generality to render surfaces which could not be ray traced using existing methods. To overcome the problem of finding a starting point for the Newton algorithm, techniques from Interval Analysis are employed. The results are presented in terms of solving a general nonlinear system of equations f(x)= 0, and thus can be extended to a large class of problems which arise in computer graphics.\",\"PeriodicalId\":163416,\"journal\":{\"name\":\"Proceedings of the 12th annual conference on Computer graphics and interactive techniques\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1985-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"196\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th annual conference on Computer graphics and interactive techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/325334.325233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th annual conference on Computer graphics and interactive techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/325334.325233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new method for ray tracing parametric surfaces is presented. The new algorithm solves the ray surface intersection directly using multivariate Newton iteration. This provides enough generality to render surfaces which could not be ray traced using existing methods. To overcome the problem of finding a starting point for the Newton algorithm, techniques from Interval Analysis are employed. The results are presented in terms of solving a general nonlinear system of equations f(x)= 0, and thus can be extended to a large class of problems which arise in computer graphics.