并行稀疏矩阵向量乘法的半二维分划

Enver Kayaaslan, B. Uçar, C. Aykanat
{"title":"并行稀疏矩阵向量乘法的半二维分划","authors":"Enver Kayaaslan, B. Uçar, C. Aykanat","doi":"10.1109/IPDPSW.2015.20","DOIUrl":null,"url":null,"abstract":"We propose a novel sparse matrix partitioning scheme, called semi-two-dimensional (s2D), for efficient parallelization of sparse matrix-vector multiply (SpMV) operations on distributed memory systems. In s2D, matrix nonzeros are more flexibly distributed among processors than one dimensional (row wise or column wise) partitioning schemes. Yet, there is a constraint which renders s2D less flexible than two-dimensional (nonzero based) partitioning schemes. The constraint is enforced to confine all communication operations in a single phase, as in 1D partition, in a parallel SpMV operation. In a positive view, s2D thus can be seen as being close to 2D partitions in terms of flexibility, and being close 1D partitions in terms of computation/communication organization. We describe two methods that take partitions on the input and output vectors of SpMV and produce s2D partitions while reducing the total communication volume. The first method obtains optimal total communication volume, while the second one heuristically reduces this quantity and takes computational load balance into account. We demonstrate that the proposed partitioning method improves the performance of parallel SpMV operations both in theory and practice with respect to 1D and 2D partitionings.","PeriodicalId":340697,"journal":{"name":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Semi-two-dimensional Partitioning for Parallel Sparse Matrix-Vector Multiplication\",\"authors\":\"Enver Kayaaslan, B. Uçar, C. Aykanat\",\"doi\":\"10.1109/IPDPSW.2015.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel sparse matrix partitioning scheme, called semi-two-dimensional (s2D), for efficient parallelization of sparse matrix-vector multiply (SpMV) operations on distributed memory systems. In s2D, matrix nonzeros are more flexibly distributed among processors than one dimensional (row wise or column wise) partitioning schemes. Yet, there is a constraint which renders s2D less flexible than two-dimensional (nonzero based) partitioning schemes. The constraint is enforced to confine all communication operations in a single phase, as in 1D partition, in a parallel SpMV operation. In a positive view, s2D thus can be seen as being close to 2D partitions in terms of flexibility, and being close 1D partitions in terms of computation/communication organization. We describe two methods that take partitions on the input and output vectors of SpMV and produce s2D partitions while reducing the total communication volume. The first method obtains optimal total communication volume, while the second one heuristically reduces this quantity and takes computational load balance into account. We demonstrate that the proposed partitioning method improves the performance of parallel SpMV operations both in theory and practice with respect to 1D and 2D partitionings.\",\"PeriodicalId\":340697,\"journal\":{\"name\":\"2015 IEEE International Parallel and Distributed Processing Symposium Workshop\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Parallel and Distributed Processing Symposium Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2015.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2015.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们提出了一种新的稀疏矩阵划分方案,称为半二维(s2D),用于分布式存储系统上稀疏矩阵向量乘法(SpMV)操作的高效并行化。在s2D中,矩阵非零比一维(行或列)分区方案更灵活地分布在处理器之间。然而,有一个约束使得s2D比二维(基于非零的)分区方案更不灵活。强制约束将所有通信操作限制在单个阶段,如在一维分区中,在并行SpMV操作中。从积极的角度来看,s2D因此可以被视为在灵活性方面接近2D分区,而在计算/通信组织方面接近1D分区。我们描述了两种方法,它们在SpMV的输入和输出矢量上进行分区,并在减少总通信量的同时产生s2D分区。第一种方法获得最优的总通信量,第二种方法在考虑计算负载平衡的情况下启发式地减小通信量。我们证明了所提出的划分方法在理论和实践上提高了并行SpMV操作在一维和二维划分方面的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Semi-two-dimensional Partitioning for Parallel Sparse Matrix-Vector Multiplication
We propose a novel sparse matrix partitioning scheme, called semi-two-dimensional (s2D), for efficient parallelization of sparse matrix-vector multiply (SpMV) operations on distributed memory systems. In s2D, matrix nonzeros are more flexibly distributed among processors than one dimensional (row wise or column wise) partitioning schemes. Yet, there is a constraint which renders s2D less flexible than two-dimensional (nonzero based) partitioning schemes. The constraint is enforced to confine all communication operations in a single phase, as in 1D partition, in a parallel SpMV operation. In a positive view, s2D thus can be seen as being close to 2D partitions in terms of flexibility, and being close 1D partitions in terms of computation/communication organization. We describe two methods that take partitions on the input and output vectors of SpMV and produce s2D partitions while reducing the total communication volume. The first method obtains optimal total communication volume, while the second one heuristically reduces this quantity and takes computational load balance into account. We demonstrate that the proposed partitioning method improves the performance of parallel SpMV operations both in theory and practice with respect to 1D and 2D partitionings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accelerating Large-Scale Single-Source Shortest Path on FPGA Relocation-Aware Floorplanning for Partially-Reconfigurable FPGA-Based Systems iWAPT Introduction and Committees Computing the Pseudo-Inverse of a Graph's Laplacian Using GPUs Optimizing Defensive Investments in Energy-Based Cyber-Physical Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1