基于边缘计算的视频分析系统的设计与实现

Yuejun Chen, Yinghao Xie, Yihong Hu, Yaqiong Liu, Guochu Shou
{"title":"基于边缘计算的视频分析系统的设计与实现","authors":"Yuejun Chen, Yinghao Xie, Yihong Hu, Yaqiong Liu, Guochu Shou","doi":"10.1109/CYBERC.2018.00035","DOIUrl":null,"url":null,"abstract":"Real-Time video analytics, whose applications range from safety, public security to smart cities, is a typical use case of Internet of Things (IoT). However, uploading the video stream to the cloud for analytics cannot meet the requirements of low latency and efficient bandwidth usage. Edge video analytics, which uploads the stream at the edge node, is a key to solve the abovementioned problem. This paper proposes an intelligent video analytics system on edge computing platform. Combining the edge computing and video analytics, this system can analyze the video stream by face recognition, indoor positioning, and semantic analytics in real time and archive the videos automatically. Specifically, applied in conference room, the video analytics system analyzes the conference room scenario and files the conference videos, which reduces the cost of manual recording and promotes the data sharing. The implementation results prove that our system can operate smoothly on the edge computing platform to provide real-time and efficient video analytics services.","PeriodicalId":282903,"journal":{"name":"2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC)","volume":"79 290 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Design and Implementation of Video Analytics System Based on Edge Computing\",\"authors\":\"Yuejun Chen, Yinghao Xie, Yihong Hu, Yaqiong Liu, Guochu Shou\",\"doi\":\"10.1109/CYBERC.2018.00035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-Time video analytics, whose applications range from safety, public security to smart cities, is a typical use case of Internet of Things (IoT). However, uploading the video stream to the cloud for analytics cannot meet the requirements of low latency and efficient bandwidth usage. Edge video analytics, which uploads the stream at the edge node, is a key to solve the abovementioned problem. This paper proposes an intelligent video analytics system on edge computing platform. Combining the edge computing and video analytics, this system can analyze the video stream by face recognition, indoor positioning, and semantic analytics in real time and archive the videos automatically. Specifically, applied in conference room, the video analytics system analyzes the conference room scenario and files the conference videos, which reduces the cost of manual recording and promotes the data sharing. The implementation results prove that our system can operate smoothly on the edge computing platform to provide real-time and efficient video analytics services.\",\"PeriodicalId\":282903,\"journal\":{\"name\":\"2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC)\",\"volume\":\"79 290 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CYBERC.2018.00035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBERC.2018.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

实时视频分析是物联网(IoT)的典型用例,其应用范围从安全、公共安全到智慧城市。但是,将视频流上传到云端进行分析,无法满足低时延和高效带宽利用的要求。边缘视频分析是解决上述问题的关键,它将视频流上传到边缘节点。提出了一种基于边缘计算平台的智能视频分析系统。该系统将边缘计算与视频分析相结合,通过人脸识别、室内定位、语义分析等对视频流进行实时分析,并对视频进行自动归档。具体应用于会议室,视频分析系统对会议室场景进行分析,对会议视频进行归档,降低人工录制的成本,促进数据共享。实施结果表明,系统能够在边缘计算平台上平稳运行,为用户提供实时、高效的视频分析服务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and Implementation of Video Analytics System Based on Edge Computing
Real-Time video analytics, whose applications range from safety, public security to smart cities, is a typical use case of Internet of Things (IoT). However, uploading the video stream to the cloud for analytics cannot meet the requirements of low latency and efficient bandwidth usage. Edge video analytics, which uploads the stream at the edge node, is a key to solve the abovementioned problem. This paper proposes an intelligent video analytics system on edge computing platform. Combining the edge computing and video analytics, this system can analyze the video stream by face recognition, indoor positioning, and semantic analytics in real time and archive the videos automatically. Specifically, applied in conference room, the video analytics system analyzes the conference room scenario and files the conference videos, which reduces the cost of manual recording and promotes the data sharing. The implementation results prove that our system can operate smoothly on the edge computing platform to provide real-time and efficient video analytics services.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Information Fusion VIA Optimized KECA with Application to Audio Emotion Recognition Application Research of YOLO v2 Combined with Color Identification Decentralized Cross-Layer Optimization for Energy-Efficient Resource Allocation in HetNets A Smart QoE Aware Network Selection Solution for IoT Systems in HetNets Based 5G Scenarios Improving Word Representation with Word Pair Distributional Asymmetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1