使用自监督学习的加密网络流量分类

Md. Shamim Towhid, Nashid Shahriar
{"title":"使用自监督学习的加密网络流量分类","authors":"Md. Shamim Towhid, Nashid Shahriar","doi":"10.1109/NetSoft54395.2022.9844044","DOIUrl":null,"url":null,"abstract":"Network traffic classification is used in many applications including network provisioning, malware detection, resource management, and so on. In modern networks, use of encrypted protocols is a norm rather than an exception. Existing network traffic classification techniques fall short in working with encrypted traffic. Although deep learning based techniques have been shown to perform well in the case of encrypted traffic classification, they require an abundance of labeled data to achieve high accuracy. However, labeled data is rarely available in sufficient volumes in real network settings as they require domain experts to annotate data with labels. Therefore, in this paper, we propose a self-supervised approach that can achieve high accuracy on encrypted network traffic classification with a few labeled data. The proposed method is evaluated on three publicly available datasets. The empirical result shows that our method not only achieves high accuracy on encrypted traffic but also has the ability to apply the acquired knowledge on a different dataset. In our experiments, our method outperforms the state-of-the-art baseline methods by ~3% in terms of accuracy even with a much lower volume of labeled data.","PeriodicalId":125799,"journal":{"name":"2022 IEEE 8th International Conference on Network Softwarization (NetSoft)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Encrypted Network Traffic Classification using Self-supervised Learning\",\"authors\":\"Md. Shamim Towhid, Nashid Shahriar\",\"doi\":\"10.1109/NetSoft54395.2022.9844044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network traffic classification is used in many applications including network provisioning, malware detection, resource management, and so on. In modern networks, use of encrypted protocols is a norm rather than an exception. Existing network traffic classification techniques fall short in working with encrypted traffic. Although deep learning based techniques have been shown to perform well in the case of encrypted traffic classification, they require an abundance of labeled data to achieve high accuracy. However, labeled data is rarely available in sufficient volumes in real network settings as they require domain experts to annotate data with labels. Therefore, in this paper, we propose a self-supervised approach that can achieve high accuracy on encrypted network traffic classification with a few labeled data. The proposed method is evaluated on three publicly available datasets. The empirical result shows that our method not only achieves high accuracy on encrypted traffic but also has the ability to apply the acquired knowledge on a different dataset. In our experiments, our method outperforms the state-of-the-art baseline methods by ~3% in terms of accuracy even with a much lower volume of labeled data.\",\"PeriodicalId\":125799,\"journal\":{\"name\":\"2022 IEEE 8th International Conference on Network Softwarization (NetSoft)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 8th International Conference on Network Softwarization (NetSoft)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NetSoft54395.2022.9844044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 8th International Conference on Network Softwarization (NetSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NetSoft54395.2022.9844044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

网络流分类用于许多应用程序,包括网络供应、恶意软件检测、资源管理等。在现代网络中,使用加密协议是一种常态,而不是例外。现有的网络流量分类技术在处理加密流量方面存在不足。尽管基于深度学习的技术已被证明在加密流量分类的情况下表现良好,但它们需要大量标记数据才能达到高精度。然而,在真实的网络环境中,标记的数据很少有足够的数量,因为它们需要领域专家用标签注释数据。因此,在本文中,我们提出了一种自监督方法,该方法可以在少量标记数据的情况下对加密网络流量分类达到较高的准确率。该方法在三个公开可用的数据集上进行了评估。实验结果表明,该方法不仅在加密流量上达到了较高的准确率,而且具有将所获得的知识应用于不同数据集的能力。在我们的实验中,即使在标记数据量少得多的情况下,我们的方法在准确性方面也比最先进的基线方法高出约3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Encrypted Network Traffic Classification using Self-supervised Learning
Network traffic classification is used in many applications including network provisioning, malware detection, resource management, and so on. In modern networks, use of encrypted protocols is a norm rather than an exception. Existing network traffic classification techniques fall short in working with encrypted traffic. Although deep learning based techniques have been shown to perform well in the case of encrypted traffic classification, they require an abundance of labeled data to achieve high accuracy. However, labeled data is rarely available in sufficient volumes in real network settings as they require domain experts to annotate data with labels. Therefore, in this paper, we propose a self-supervised approach that can achieve high accuracy on encrypted network traffic classification with a few labeled data. The proposed method is evaluated on three publicly available datasets. The empirical result shows that our method not only achieves high accuracy on encrypted traffic but also has the ability to apply the acquired knowledge on a different dataset. In our experiments, our method outperforms the state-of-the-art baseline methods by ~3% in terms of accuracy even with a much lower volume of labeled data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flexible Measurement Testbed for Evaluating Time-Sensitive Networking in Industrial Automation Applications Latency-aware Topology Discovery in SDN-based Time-Sensitive Networks NLP4: An Architecture for Intent-Driven Data Plane Programmability CHIMA: a Framework for Network Services Deployment and Performance Assurance Encrypted Network Traffic Classification in SDN using Self-supervised Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1