使用知识图嵌入和机器学习检测云边缘基础设施中的资源相关事件

Katerina Mitropoulou, P. Kokkinos, P. Soumplis, Emmanouel A. Varvarigos
{"title":"使用知识图嵌入和机器学习检测云边缘基础设施中的资源相关事件","authors":"Katerina Mitropoulou, P. Kokkinos, P. Soumplis, Emmanouel A. Varvarigos","doi":"10.1109/CSNDSP54353.2022.9908022","DOIUrl":null,"url":null,"abstract":"Edge and cloud computing infrastructures consist of multiple resources that may belong to different providers and are utilized in a shared manner by distributed applications for computing and storage purposes. Detecting events that affect the efficient operation of such infrastructures is a challenge and absolutely necessary for providing high quality cloud-edge services. In this work, we model cloud-edge infrastructures using knowledge graphs and use graph embeddings to transform the graphs into vectors. Then, traditional data-driven machine learning algorithms are used in order to detect anomaly events that relate to the infrastructure usage.","PeriodicalId":288069,"journal":{"name":"2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detect Resource Related Events in a Cloud-Edge Infrastructure using Knowledge Graph Embeddings and Machine Learning\",\"authors\":\"Katerina Mitropoulou, P. Kokkinos, P. Soumplis, Emmanouel A. Varvarigos\",\"doi\":\"10.1109/CSNDSP54353.2022.9908022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Edge and cloud computing infrastructures consist of multiple resources that may belong to different providers and are utilized in a shared manner by distributed applications for computing and storage purposes. Detecting events that affect the efficient operation of such infrastructures is a challenge and absolutely necessary for providing high quality cloud-edge services. In this work, we model cloud-edge infrastructures using knowledge graphs and use graph embeddings to transform the graphs into vectors. Then, traditional data-driven machine learning algorithms are used in order to detect anomaly events that relate to the infrastructure usage.\",\"PeriodicalId\":288069,\"journal\":{\"name\":\"2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSNDSP54353.2022.9908022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSNDSP54353.2022.9908022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

边缘和云计算基础设施由多个资源组成,这些资源可能属于不同的提供商,并由分布式应用程序以共享的方式用于计算和存储目的。检测影响此类基础设施高效运行的事件是一项挑战,对于提供高质量的云边缘服务是绝对必要的。在这项工作中,我们使用知识图对云边缘基础设施进行建模,并使用图嵌入将图转换为向量。然后,使用传统的数据驱动机器学习算法来检测与基础设施使用相关的异常事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detect Resource Related Events in a Cloud-Edge Infrastructure using Knowledge Graph Embeddings and Machine Learning
Edge and cloud computing infrastructures consist of multiple resources that may belong to different providers and are utilized in a shared manner by distributed applications for computing and storage purposes. Detecting events that affect the efficient operation of such infrastructures is a challenge and absolutely necessary for providing high quality cloud-edge services. In this work, we model cloud-edge infrastructures using knowledge graphs and use graph embeddings to transform the graphs into vectors. Then, traditional data-driven machine learning algorithms are used in order to detect anomaly events that relate to the infrastructure usage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Visible Light Positioning with MSE Inner Loop for Underwater Environment Fibre Optics Biosensors for the Detection of Bacteria – a review Experimental characterization of sub-pixel underwater optical camera communications Energy aware routing protocol for sparse underwater acoustic wireless sensor network iDAM: A Distributed MUD Framework for Mitigation of Volumetric Attacks in IoT Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1