循环代谢网络中多反应冲击度的高效计算

Yang Cong, Takeyuki Tamura, T. Akutsu, W. Ching
{"title":"循环代谢网络中多反应冲击度的高效计算","authors":"Yang Cong, Takeyuki Tamura, T. Akutsu, W. Ching","doi":"10.1145/1651318.1651332","DOIUrl":null,"url":null,"abstract":"Analysis of the robustness of a metabolic network against of single or multiple reaction(s) is useful for mining important enzymes/genes. For that purpose, the impact degree was proposed by Jiang et al. In this short paper, we extend the impact degree for metabolic networks containing cycles and develop a simple algorithm for its computation. Furthermore, we propose an improved algorithm for computing impact degrees for deletions of multiple reactions. The results of preliminary computational experiments suggest that the improved algorithm is several tens of times faster than a simple algorithm.","PeriodicalId":143937,"journal":{"name":"Data and Text Mining in Bioinformatics","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Efficient computation of impact degrees for multiple reactions in metabolic networks with cycles\",\"authors\":\"Yang Cong, Takeyuki Tamura, T. Akutsu, W. Ching\",\"doi\":\"10.1145/1651318.1651332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analysis of the robustness of a metabolic network against of single or multiple reaction(s) is useful for mining important enzymes/genes. For that purpose, the impact degree was proposed by Jiang et al. In this short paper, we extend the impact degree for metabolic networks containing cycles and develop a simple algorithm for its computation. Furthermore, we propose an improved algorithm for computing impact degrees for deletions of multiple reactions. The results of preliminary computational experiments suggest that the improved algorithm is several tens of times faster than a simple algorithm.\",\"PeriodicalId\":143937,\"journal\":{\"name\":\"Data and Text Mining in Bioinformatics\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data and Text Mining in Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1651318.1651332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data and Text Mining in Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1651318.1651332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

分析代谢网络对单个或多个反应的鲁棒性对于挖掘重要的酶/基因是有用的。为此,Jiang等人提出了影响程度。在这篇短文中,我们扩展了含循环代谢网络的影响程度,并开发了一个简单的计算算法。此外,我们提出了一种改进的算法来计算多反应缺失的影响程度。初步的计算实验结果表明,改进后的算法比简单的算法快几十倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient computation of impact degrees for multiple reactions in metabolic networks with cycles
Analysis of the robustness of a metabolic network against of single or multiple reaction(s) is useful for mining important enzymes/genes. For that purpose, the impact degree was proposed by Jiang et al. In this short paper, we extend the impact degree for metabolic networks containing cycles and develop a simple algorithm for its computation. Furthermore, we propose an improved algorithm for computing impact degrees for deletions of multiple reactions. The results of preliminary computational experiments suggest that the improved algorithm is several tens of times faster than a simple algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Construction of Multi-level Networks Incorporating Molecule, Cell, Organ and Phenotype Properties for Drug-induced Phenotype Prediction Integrative Database for Exploring Compound Combinations of Natural Products for Medical Effects TILD: A Strategy to Identify Cancer-related Genes Using Title Information in Literature Data An Exploration of the Collaborative Networks for Clinical and Academic Domains in AIDS Research: A Spatial Scientometric Approach Identification of a Specific Base Sequence of Pathogenic E. Coli through a Genomic Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1