动态城市驾驶场景下的自动驾驶速度规划

Mingqiang Wang, Zhenpo Wang, Lei Zhang, D. Dorrell
{"title":"动态城市驾驶场景下的自动驾驶速度规划","authors":"Mingqiang Wang, Zhenpo Wang, Lei Zhang, D. Dorrell","doi":"10.1109/ECCE44975.2020.9235659","DOIUrl":null,"url":null,"abstract":"Trajectory planning is essential for autonomous vehicles when operating in dynamic traffic environments. A layered approach usually separates out into path planning and speed planning. In the work reported in this paper, speed profile planning over a given path, which is defined by a trajectory planner, is proposed. The relevant information is provided by vehicle-to-vehicle (V2V) communication. First, a speed planning optimization algorithm which considers safety, time efficiency, smoothness and comfort constraints is presented. This strategy can provide a safe, comfortable and feasible speed profile for autonomous driving via a S-T graph under a complex traffic environment. Secondly, a conventional non-convex optimization problem is translated into a quadratic programming problem. This has the advantage of a low computation requirement because it uses a CFS (convex feasible set) algorithm. The effectiveness of the proposed scheme is verified through simulation studies in various urban driving scenarios. This holistic approach provides a more effective approach to speed and trajectory planning.","PeriodicalId":433712,"journal":{"name":"2020 IEEE Energy Conversion Congress and Exposition (ECCE)","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Speed Planning for Autonomous Driving in Dynamic Urban Driving Scenarios\",\"authors\":\"Mingqiang Wang, Zhenpo Wang, Lei Zhang, D. Dorrell\",\"doi\":\"10.1109/ECCE44975.2020.9235659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Trajectory planning is essential for autonomous vehicles when operating in dynamic traffic environments. A layered approach usually separates out into path planning and speed planning. In the work reported in this paper, speed profile planning over a given path, which is defined by a trajectory planner, is proposed. The relevant information is provided by vehicle-to-vehicle (V2V) communication. First, a speed planning optimization algorithm which considers safety, time efficiency, smoothness and comfort constraints is presented. This strategy can provide a safe, comfortable and feasible speed profile for autonomous driving via a S-T graph under a complex traffic environment. Secondly, a conventional non-convex optimization problem is translated into a quadratic programming problem. This has the advantage of a low computation requirement because it uses a CFS (convex feasible set) algorithm. The effectiveness of the proposed scheme is verified through simulation studies in various urban driving scenarios. This holistic approach provides a more effective approach to speed and trajectory planning.\",\"PeriodicalId\":433712,\"journal\":{\"name\":\"2020 IEEE Energy Conversion Congress and Exposition (ECCE)\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Energy Conversion Congress and Exposition (ECCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECCE44975.2020.9235659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Energy Conversion Congress and Exposition (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE44975.2020.9235659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

轨迹规划是自动驾驶汽车在动态交通环境中运行的关键。分层方法通常分为路径规划和速度规划。在本文的工作中,提出了在给定路径上的速度剖面规划,该路径由轨迹规划器定义。相关信息由车对车(V2V)通信提供。首先,提出了一种考虑安全性、时效性、平滑性和舒适性约束的速度规划优化算法。该策略可以通过S-T图为复杂交通环境下的自动驾驶提供安全、舒适、可行的速度剖面。其次,将传统的非凸优化问题转化为二次规划问题。这样做的优点是计算需求低,因为它使用了CFS(凸可行集)算法。通过不同城市驾驶场景的仿真研究,验证了该方案的有效性。这种整体方法为速度和轨迹规划提供了更有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Speed Planning for Autonomous Driving in Dynamic Urban Driving Scenarios
Trajectory planning is essential for autonomous vehicles when operating in dynamic traffic environments. A layered approach usually separates out into path planning and speed planning. In the work reported in this paper, speed profile planning over a given path, which is defined by a trajectory planner, is proposed. The relevant information is provided by vehicle-to-vehicle (V2V) communication. First, a speed planning optimization algorithm which considers safety, time efficiency, smoothness and comfort constraints is presented. This strategy can provide a safe, comfortable and feasible speed profile for autonomous driving via a S-T graph under a complex traffic environment. Secondly, a conventional non-convex optimization problem is translated into a quadratic programming problem. This has the advantage of a low computation requirement because it uses a CFS (convex feasible set) algorithm. The effectiveness of the proposed scheme is verified through simulation studies in various urban driving scenarios. This holistic approach provides a more effective approach to speed and trajectory planning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Analysis of a High Saliency Transverse Flux Machine with a Novel Rotor Structure for Traction Applications Design and Evaluation of a Power Hardware-in-the-Loop Machine Emulator Statistics-based Switching Loss Characterization of Power Semiconductor Device Electromagnetic Interference Spectrum Steering Technique using Switching Angles Modulation in GaN DC-DC Converters Winding Embedded Liquid Cooling for High Power Density Slotless Motor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1