VECFrame:用于联网自动驾驶汽车的车辆边缘计算框架

Sihai Tang, B. Chen, Harold Iwen, Jason Hirsch, Song Fu, Qing Yang, P. Palacharla, N. Wang, Xi Wang, Weisong Shi
{"title":"VECFrame:用于联网自动驾驶汽车的车辆边缘计算框架","authors":"Sihai Tang, B. Chen, Harold Iwen, Jason Hirsch, Song Fu, Qing Yang, P. Palacharla, N. Wang, Xi Wang, Weisong Shi","doi":"10.1109/EDGE53862.2021.00019","DOIUrl":null,"url":null,"abstract":"Autonomous vehicle systems require sensor data to make crucial driving and traffic management decisions. Reliable data as well as computational resources become critical. In this paper, we develop a Vehicular Edge Computing FRAMEwork (VECFrame) for connected and autonomous vehicles (CAVs) exploring containerization, indirect communication, and edge-enabled cooperative object detection. Through our framework, the data, generated by on-board sensors, is used towards various edge serviceable tasks. Due to the limited view of a vehicle, sensor data from one vehicle cannot be used to perceive road and traffic condition of a larger area. To address this problem, VECFrame facilitates data transfer and fusion and cooperative object detection from multiple vehicles. Through real-world experiments, we evaluate the performance and robustness of our framework on different device architectures and under different scenarios. We demonstrate that our framework achieves a more accurate perception of traffic condition via vehicle-edge data transfer and on-edge computation.","PeriodicalId":115969,"journal":{"name":"2021 IEEE International Conference on Edge Computing (EDGE)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"VECFrame: A Vehicular Edge Computing Framework for Connected Autonomous Vehicles\",\"authors\":\"Sihai Tang, B. Chen, Harold Iwen, Jason Hirsch, Song Fu, Qing Yang, P. Palacharla, N. Wang, Xi Wang, Weisong Shi\",\"doi\":\"10.1109/EDGE53862.2021.00019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous vehicle systems require sensor data to make crucial driving and traffic management decisions. Reliable data as well as computational resources become critical. In this paper, we develop a Vehicular Edge Computing FRAMEwork (VECFrame) for connected and autonomous vehicles (CAVs) exploring containerization, indirect communication, and edge-enabled cooperative object detection. Through our framework, the data, generated by on-board sensors, is used towards various edge serviceable tasks. Due to the limited view of a vehicle, sensor data from one vehicle cannot be used to perceive road and traffic condition of a larger area. To address this problem, VECFrame facilitates data transfer and fusion and cooperative object detection from multiple vehicles. Through real-world experiments, we evaluate the performance and robustness of our framework on different device architectures and under different scenarios. We demonstrate that our framework achieves a more accurate perception of traffic condition via vehicle-edge data transfer and on-edge computation.\",\"PeriodicalId\":115969,\"journal\":{\"name\":\"2021 IEEE International Conference on Edge Computing (EDGE)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Edge Computing (EDGE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDGE53862.2021.00019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Edge Computing (EDGE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDGE53862.2021.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

自动驾驶汽车系统需要传感器数据来做出关键的驾驶和交通管理决策。可靠的数据和计算资源变得至关重要。在本文中,我们为联网和自动驾驶车辆(cav)开发了一个车辆边缘计算框架(VECFrame),探索集装箱化、间接通信和边缘协同目标检测。通过我们的框架,由机载传感器生成的数据用于各种边缘可服务任务。由于车辆的视野有限,单个车辆的传感器数据无法用于感知更大区域的道路和交通状况。为了解决这个问题,VECFrame促进了来自多辆车的数据传输和融合以及合作目标检测。通过真实世界的实验,我们评估了我们的框架在不同设备架构和不同场景下的性能和鲁棒性。我们证明了我们的框架通过车辆边缘数据传输和边缘计算实现了更准确的交通状况感知。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VECFrame: A Vehicular Edge Computing Framework for Connected Autonomous Vehicles
Autonomous vehicle systems require sensor data to make crucial driving and traffic management decisions. Reliable data as well as computational resources become critical. In this paper, we develop a Vehicular Edge Computing FRAMEwork (VECFrame) for connected and autonomous vehicles (CAVs) exploring containerization, indirect communication, and edge-enabled cooperative object detection. Through our framework, the data, generated by on-board sensors, is used towards various edge serviceable tasks. Due to the limited view of a vehicle, sensor data from one vehicle cannot be used to perceive road and traffic condition of a larger area. To address this problem, VECFrame facilitates data transfer and fusion and cooperative object detection from multiple vehicles. Through real-world experiments, we evaluate the performance and robustness of our framework on different device architectures and under different scenarios. We demonstrate that our framework achieves a more accurate perception of traffic condition via vehicle-edge data transfer and on-edge computation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Framework for Analyzing Resource Allocation Policies for Multi-Access Edge Computing Distributed Online Resource Scheduling for Mobile Edge Servers Towards Sustainable Satellite Edge Computing Mobile Edge Data Cooperative Cache Admission Based on Content Popularity Data Sharing-Aware Task Allocation in Edge Computing Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1