基于循环径向基函数网络的非平稳动态系统建模

B. Todorovic, M. Stankovic, C. Moraga
{"title":"基于循环径向基函数网络的非平稳动态系统建模","authors":"B. Todorovic, M. Stankovic, C. Moraga","doi":"10.1109/NEUREL.2002.1057961","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of continuous adaptation of neural networks in a non-stationary environment. We have applied the extended Kalman filter to the parameter, state and structure estimation of a recurrent radial basis function network. The architecture of the recurrent radial basis function network implements a nonlinear autoregressive model with exogenous inputs. Statistical criteria for structure adaptation (growing and pruning of hidden units and connections of the network) were derived using statistics estimated by the Kalman filter. The proposed algorithm is applied to non-stationary dynamic system modeling.","PeriodicalId":347066,"journal":{"name":"6th Seminar on Neural Network Applications in Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling non-stationary dynamic system using recurrent radial basis function networks\",\"authors\":\"B. Todorovic, M. Stankovic, C. Moraga\",\"doi\":\"10.1109/NEUREL.2002.1057961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of continuous adaptation of neural networks in a non-stationary environment. We have applied the extended Kalman filter to the parameter, state and structure estimation of a recurrent radial basis function network. The architecture of the recurrent radial basis function network implements a nonlinear autoregressive model with exogenous inputs. Statistical criteria for structure adaptation (growing and pruning of hidden units and connections of the network) were derived using statistics estimated by the Kalman filter. The proposed algorithm is applied to non-stationary dynamic system modeling.\",\"PeriodicalId\":347066,\"journal\":{\"name\":\"6th Seminar on Neural Network Applications in Electrical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"6th Seminar on Neural Network Applications in Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2002.1057961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"6th Seminar on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2002.1057961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了神经网络在非平稳环境下的连续自适应问题。将扩展卡尔曼滤波应用于循环径向基函数网络的参数估计、状态估计和结构估计。递归径向基函数网络的结构实现了带有外生输入的非线性自回归模型。利用卡尔曼滤波估计的统计量,导出了结构自适应的统计准则(隐单元的生长和修剪以及网络的连接)。将该算法应用于非平稳动态系统建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling non-stationary dynamic system using recurrent radial basis function networks
This paper addresses the problem of continuous adaptation of neural networks in a non-stationary environment. We have applied the extended Kalman filter to the parameter, state and structure estimation of a recurrent radial basis function network. The architecture of the recurrent radial basis function network implements a nonlinear autoregressive model with exogenous inputs. Statistical criteria for structure adaptation (growing and pruning of hidden units and connections of the network) were derived using statistics estimated by the Kalman filter. The proposed algorithm is applied to non-stationary dynamic system modeling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The neural compensator for advance vehicle controller Effect of magnetic stimulation of pineal complex of the brain on Na,K-ATPase in experimental Alzheimer's disease Foundations of predictive data mining Application of cellular neural networks in stress analysis of prismatic bars subjected to torsion Neural network models based on small data sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1