多准则优化进化人工蚂蚁计算智能技术

E. S. Solano Charris, J. Montoya-Torres, Carlos D. Paternina-Arboleda
{"title":"多准则优化进化人工蚂蚁计算智能技术","authors":"E. S. Solano Charris, J. Montoya-Torres, Carlos D. Paternina-Arboleda","doi":"10.1109/ICICISYS.2009.5358313","DOIUrl":null,"url":null,"abstract":"This paper presents the application Ant Colony Optimization (ACO) to slve multi-criteria combinatorial optimization problems. The proposed decision support technique is validated on the Hybrid Flowshop Scheduling Problem with minimization of both the makespan and the total completion time of jobs. This problem is considered to be strongly NP-hard and has been little studied literature. Our algorithm is compared against other well-known heuristics from the literature adapted to solve this problem and experimental results show that our algorithm outperforms them.","PeriodicalId":206575,"journal":{"name":"2009 IEEE International Conference on Intelligent Computing and Intelligent Systems","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-criteria optimization evolving artificial ants as a computational intelligence technique\",\"authors\":\"E. S. Solano Charris, J. Montoya-Torres, Carlos D. Paternina-Arboleda\",\"doi\":\"10.1109/ICICISYS.2009.5358313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the application Ant Colony Optimization (ACO) to slve multi-criteria combinatorial optimization problems. The proposed decision support technique is validated on the Hybrid Flowshop Scheduling Problem with minimization of both the makespan and the total completion time of jobs. This problem is considered to be strongly NP-hard and has been little studied literature. Our algorithm is compared against other well-known heuristics from the literature adapted to solve this problem and experimental results show that our algorithm outperforms them.\",\"PeriodicalId\":206575,\"journal\":{\"name\":\"2009 IEEE International Conference on Intelligent Computing and Intelligent Systems\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Intelligent Computing and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICISYS.2009.5358313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Intelligent Computing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICISYS.2009.5358313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了蚁群算法在多准则组合优化问题中的应用。在最大完工时间和总完工时间都最小化的混合流水车间调度问题上验证了所提出的决策支持技术。这个问题被认为是强np困难的,文献研究很少。将我们的算法与文献中用于解决该问题的其他知名启发式算法进行了比较,实验结果表明我们的算法优于它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-criteria optimization evolving artificial ants as a computational intelligence technique
This paper presents the application Ant Colony Optimization (ACO) to slve multi-criteria combinatorial optimization problems. The proposed decision support technique is validated on the Hybrid Flowshop Scheduling Problem with minimization of both the makespan and the total completion time of jobs. This problem is considered to be strongly NP-hard and has been little studied literature. Our algorithm is compared against other well-known heuristics from the literature adapted to solve this problem and experimental results show that our algorithm outperforms them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Genetic algorithm for the one-commodity pickup-and-delivery vehicle routing problem An intelligent model selection scheme based on particle swarm optimization A novel blind watermark algorithm based On SVD and DCT Optimization of machining parameters using estimation of distribution algorithms Optimal control analysis on a class of hybrid systems with impulses and switches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1