基于持续同源的深度神经网络剪枝

Satoru Watanabe, H. Yamana
{"title":"基于持续同源的深度神经网络剪枝","authors":"Satoru Watanabe, H. Yamana","doi":"10.1109/AIKE48582.2020.00030","DOIUrl":null,"url":null,"abstract":"Deep neural networks (DNNs) have improved the performance of artificial intelligence systems in various fields including image analysis, speech recognition, and text classification. However, the consumption of enormous computation resources prevents DNNs from operating on small computers such as edge sensors and handheld devices. Network pruning (NP), which removes parameters from trained DNNs, is one of the prominent methods of reducing the resource consumption of DNNs. In this paper, we propose a novel method of NP, hereafter referred to as PHPM, using persistent homology (PH). PH investigates the inner representation of knowledge in DNNs, and PHPM utilizes the investigation in NP to improve the efficiency of pruning. PHPM prunes DNNs in ascending order of magnitudes of the combinational effects among neurons, which are calculated using the one-dimensional PH, to prevent the deterioration of the accuracy. We compared PHPM with global magnitude pruning method (GMP), which is one of the common baselines to evaluate pruning methods. Evaluation results show that the classification accuracy of DNNs pruned by PHPM outperforms that pruned by GMP.","PeriodicalId":370671,"journal":{"name":"2020 IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Deep Neural Network Pruning Using Persistent Homology\",\"authors\":\"Satoru Watanabe, H. Yamana\",\"doi\":\"10.1109/AIKE48582.2020.00030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep neural networks (DNNs) have improved the performance of artificial intelligence systems in various fields including image analysis, speech recognition, and text classification. However, the consumption of enormous computation resources prevents DNNs from operating on small computers such as edge sensors and handheld devices. Network pruning (NP), which removes parameters from trained DNNs, is one of the prominent methods of reducing the resource consumption of DNNs. In this paper, we propose a novel method of NP, hereafter referred to as PHPM, using persistent homology (PH). PH investigates the inner representation of knowledge in DNNs, and PHPM utilizes the investigation in NP to improve the efficiency of pruning. PHPM prunes DNNs in ascending order of magnitudes of the combinational effects among neurons, which are calculated using the one-dimensional PH, to prevent the deterioration of the accuracy. We compared PHPM with global magnitude pruning method (GMP), which is one of the common baselines to evaluate pruning methods. Evaluation results show that the classification accuracy of DNNs pruned by PHPM outperforms that pruned by GMP.\",\"PeriodicalId\":370671,\"journal\":{\"name\":\"2020 IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIKE48582.2020.00030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIKE48582.2020.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

深度神经网络(dnn)改善了人工智能系统在各个领域的性能,包括图像分析、语音识别和文本分类。然而,巨大的计算资源消耗使得深度神经网络无法在小型计算机上运行,例如边缘传感器和手持设备。网络修剪(Network pruning, NP)是减少dnn资源消耗的重要方法之一,它从训练好的dnn中去除参数。在本文中,我们提出了一种新的NP方法,以下简称PHPM,使用持久同源性(PH)。PH研究知识在dnn中的内部表示,PHPM利用NP中的研究来提高剪枝的效率。PHPM按神经元间组合效应的升序对dnn进行修剪,这些神经元间的组合效应是使用一维PH计算的,以防止准确性的下降。我们将PHPM与全局量级修剪方法(GMP)进行了比较,GMP是评估修剪方法的常用基线之一。评价结果表明,PHPM修剪的dnn分类精度优于GMP修剪的dnn分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Neural Network Pruning Using Persistent Homology
Deep neural networks (DNNs) have improved the performance of artificial intelligence systems in various fields including image analysis, speech recognition, and text classification. However, the consumption of enormous computation resources prevents DNNs from operating on small computers such as edge sensors and handheld devices. Network pruning (NP), which removes parameters from trained DNNs, is one of the prominent methods of reducing the resource consumption of DNNs. In this paper, we propose a novel method of NP, hereafter referred to as PHPM, using persistent homology (PH). PH investigates the inner representation of knowledge in DNNs, and PHPM utilizes the investigation in NP to improve the efficiency of pruning. PHPM prunes DNNs in ascending order of magnitudes of the combinational effects among neurons, which are calculated using the one-dimensional PH, to prevent the deterioration of the accuracy. We compared PHPM with global magnitude pruning method (GMP), which is one of the common baselines to evaluate pruning methods. Evaluation results show that the classification accuracy of DNNs pruned by PHPM outperforms that pruned by GMP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial Intelligence Design on Embedded Board with Edge Computing for Vehicle Applications Analysis of Permission Selection Techniques in Machine Learning-based Malicious App Detection Using Cultural Algorithms with Common Value Auctions to Provide Sustainability in Complex Dynamic Environments Knowledge Graph Visualization: Challenges, Framework, and Implementation Evaluation of Classification algorithms for Distributed Denial of Service Attack Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1