{"title":"纳米机电系统可调超材料","authors":"Qiugu Wang, D. Mao, Peng Liu, Liang Dong","doi":"10.1109/TRANSDUCERS.2017.7994159","DOIUrl":null,"url":null,"abstract":"This paper reports on a nanoelectromechanical systems-based tunable IR metamaterial realized by embedding nanocantilevers into complementary split ring resonator structures suspended over individual wells. The optical field confined in the air gap of c-SRR is strongly modulated by electromechanical deflection of the nanocantilever, thus modulating the reflection spectrum of the metamaterial. With the easy-to-implement tunable meta-atom design, the NEMS-enabled metamaterial provides an ultrahigh mechanical modulation frequency of 32.26 MHz and 38% optical signal modulation at a wavelength of 2.1 μm. We envision a compact, efficient, and high-speed electro-optic modulation platform in the IR region using this tunable metamaterial technology.","PeriodicalId":174774,"journal":{"name":"2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoelectromechanical systems-enabled tunable metamaterials\",\"authors\":\"Qiugu Wang, D. Mao, Peng Liu, Liang Dong\",\"doi\":\"10.1109/TRANSDUCERS.2017.7994159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports on a nanoelectromechanical systems-based tunable IR metamaterial realized by embedding nanocantilevers into complementary split ring resonator structures suspended over individual wells. The optical field confined in the air gap of c-SRR is strongly modulated by electromechanical deflection of the nanocantilever, thus modulating the reflection spectrum of the metamaterial. With the easy-to-implement tunable meta-atom design, the NEMS-enabled metamaterial provides an ultrahigh mechanical modulation frequency of 32.26 MHz and 38% optical signal modulation at a wavelength of 2.1 μm. We envision a compact, efficient, and high-speed electro-optic modulation platform in the IR region using this tunable metamaterial technology.\",\"PeriodicalId\":174774,\"journal\":{\"name\":\"2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TRANSDUCERS.2017.7994159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRANSDUCERS.2017.7994159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper reports on a nanoelectromechanical systems-based tunable IR metamaterial realized by embedding nanocantilevers into complementary split ring resonator structures suspended over individual wells. The optical field confined in the air gap of c-SRR is strongly modulated by electromechanical deflection of the nanocantilever, thus modulating the reflection spectrum of the metamaterial. With the easy-to-implement tunable meta-atom design, the NEMS-enabled metamaterial provides an ultrahigh mechanical modulation frequency of 32.26 MHz and 38% optical signal modulation at a wavelength of 2.1 μm. We envision a compact, efficient, and high-speed electro-optic modulation platform in the IR region using this tunable metamaterial technology.