Muhammad Abul Hassan, Syed Irfan Ullah, I. Khan, Syed Bilal Hussain Shah, Abdus Salam, A. Khan
{"title":"基于鱼眼状态路由的无人机自组织飞行网络路由形成","authors":"Muhammad Abul Hassan, Syed Irfan Ullah, I. Khan, Syed Bilal Hussain Shah, Abdus Salam, A. Khan","doi":"10.1145/3440749.3442600","DOIUrl":null,"url":null,"abstract":"Flying Ad-hoc Networks creates rapid topology changes that causes routing problems between Unmanned Aerial Vehicle and ground base station. Mobile Ad-hoc networks and Vehicular Ad-hoc network protocols are conventionally adopted to overcome routing issues. But Still, they do not fully address the routing problem in Flying Ad-hoc Networks. In this paper, Fisheye state routing protocol is implemented and evaluated to fully overcome routing issues in a Flying Ad-hoc Network and fully utilize the limited resource of Unmanned Aerial Vehicles. Performance evaluation is measured in terms of throughput, average end-to-end delay, packet drop analysis as congestion measure with Ad-Hoc On-Demand Distance Vector (AODV), Distance Sequence Distance Vector (DSDV), Optimized Link State Routing (OLSR), Temporary Ordered Routing Protocol (TORA) and Dynamic Source Routing (DSR). Fisheye state routing protocol showed promising results regarding throughput, packet drop rate, and average end-to-end delay compared with traditional protocols. Moreover, with the suggested improvement of the parameters, network lifetime is increased, and resources harvesting becomes under control.","PeriodicalId":344578,"journal":{"name":"Proceedings of the 4th International Conference on Future Networks and Distributed Systems","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Unmanned Aerial Vehicles Routing Formation Using Fisheye State Routing for Flying Ad-hoc Networks\",\"authors\":\"Muhammad Abul Hassan, Syed Irfan Ullah, I. Khan, Syed Bilal Hussain Shah, Abdus Salam, A. Khan\",\"doi\":\"10.1145/3440749.3442600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flying Ad-hoc Networks creates rapid topology changes that causes routing problems between Unmanned Aerial Vehicle and ground base station. Mobile Ad-hoc networks and Vehicular Ad-hoc network protocols are conventionally adopted to overcome routing issues. But Still, they do not fully address the routing problem in Flying Ad-hoc Networks. In this paper, Fisheye state routing protocol is implemented and evaluated to fully overcome routing issues in a Flying Ad-hoc Network and fully utilize the limited resource of Unmanned Aerial Vehicles. Performance evaluation is measured in terms of throughput, average end-to-end delay, packet drop analysis as congestion measure with Ad-Hoc On-Demand Distance Vector (AODV), Distance Sequence Distance Vector (DSDV), Optimized Link State Routing (OLSR), Temporary Ordered Routing Protocol (TORA) and Dynamic Source Routing (DSR). Fisheye state routing protocol showed promising results regarding throughput, packet drop rate, and average end-to-end delay compared with traditional protocols. Moreover, with the suggested improvement of the parameters, network lifetime is increased, and resources harvesting becomes under control.\",\"PeriodicalId\":344578,\"journal\":{\"name\":\"Proceedings of the 4th International Conference on Future Networks and Distributed Systems\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 4th International Conference on Future Networks and Distributed Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3440749.3442600\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Future Networks and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3440749.3442600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unmanned Aerial Vehicles Routing Formation Using Fisheye State Routing for Flying Ad-hoc Networks
Flying Ad-hoc Networks creates rapid topology changes that causes routing problems between Unmanned Aerial Vehicle and ground base station. Mobile Ad-hoc networks and Vehicular Ad-hoc network protocols are conventionally adopted to overcome routing issues. But Still, they do not fully address the routing problem in Flying Ad-hoc Networks. In this paper, Fisheye state routing protocol is implemented and evaluated to fully overcome routing issues in a Flying Ad-hoc Network and fully utilize the limited resource of Unmanned Aerial Vehicles. Performance evaluation is measured in terms of throughput, average end-to-end delay, packet drop analysis as congestion measure with Ad-Hoc On-Demand Distance Vector (AODV), Distance Sequence Distance Vector (DSDV), Optimized Link State Routing (OLSR), Temporary Ordered Routing Protocol (TORA) and Dynamic Source Routing (DSR). Fisheye state routing protocol showed promising results regarding throughput, packet drop rate, and average end-to-end delay compared with traditional protocols. Moreover, with the suggested improvement of the parameters, network lifetime is increased, and resources harvesting becomes under control.