利用物理信息神经网络计算TI介质中qSV波的走时

U. Waheed, T. Alkhalifah, B. Li, E. Haghighat, A. Stovas, J. Virieux
{"title":"利用物理信息神经网络计算TI介质中qSV波的走时","authors":"U. Waheed, T. Alkhalifah, B. Li, E. Haghighat, A. Stovas, J. Virieux","doi":"10.3997/2214-4609.202112541","DOIUrl":null,"url":null,"abstract":"Summary Traveltimes corresponding to both compressional and shear waves are needed for many applications in seismology ranging from seismic imaging to earthquake localization. Since the behavior of shear waves in anisotropic media is considerably more complicated than the isotropic case, accurate traveltime computation for shear waves in anisotropic media remains a challenge. Ray tracing methods are often used to compute qSV wave traveltimes but they become unstable around triplication points and, therefore, we often use the weak anisotropy approximation. Here, we employ the emerging paradigm of physics-informed neural networks to solve transversely isotropic eikonal equation for the qSV wave that otherwise are not easily solvable using conventional finite difference methods. By minimizing a loss function formed by imposing the validity of eikonal equation, we train a neural network to produce traveltime solutions that are consistent with the underlying equation. Through tests on synthetic models, we show that the method is capable of producing accurate qSV wave traveltimes even at triplication points and works for arbitrary strength of medium anisotropy.","PeriodicalId":265130,"journal":{"name":"82nd EAGE Annual Conference & Exhibition","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Traveltime Computation for qSV Waves in TI Media Using Physics-Informed Neural Networks\",\"authors\":\"U. Waheed, T. Alkhalifah, B. Li, E. Haghighat, A. Stovas, J. Virieux\",\"doi\":\"10.3997/2214-4609.202112541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Traveltimes corresponding to both compressional and shear waves are needed for many applications in seismology ranging from seismic imaging to earthquake localization. Since the behavior of shear waves in anisotropic media is considerably more complicated than the isotropic case, accurate traveltime computation for shear waves in anisotropic media remains a challenge. Ray tracing methods are often used to compute qSV wave traveltimes but they become unstable around triplication points and, therefore, we often use the weak anisotropy approximation. Here, we employ the emerging paradigm of physics-informed neural networks to solve transversely isotropic eikonal equation for the qSV wave that otherwise are not easily solvable using conventional finite difference methods. By minimizing a loss function formed by imposing the validity of eikonal equation, we train a neural network to produce traveltime solutions that are consistent with the underlying equation. Through tests on synthetic models, we show that the method is capable of producing accurate qSV wave traveltimes even at triplication points and works for arbitrary strength of medium anisotropy.\",\"PeriodicalId\":265130,\"journal\":{\"name\":\"82nd EAGE Annual Conference & Exhibition\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"82nd EAGE Annual Conference & Exhibition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.202112541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"82nd EAGE Annual Conference & Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.202112541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

从地震成像到地震定位,地震学中的许多应用都需要对应于纵波和横波的走时。由于各向异性介质中剪切波的行为比各向同性介质中复杂得多,因此各向异性介质中剪切波的准确走时计算仍然是一个挑战。射线追踪方法通常用于计算qSV波的传播时间,但它们在三点附近变得不稳定,因此,我们通常使用弱各向异性近似。在这里,我们采用新兴的物理信息神经网络范式来求解qSV波的横向各向同性方程,否则使用传统的有限差分方法不容易求解。通过最小化通过施加eikonal方程的有效性形成的损失函数,我们训练一个神经网络来产生与底层方程一致的旅行时间解。通过对综合模型的测试,我们表明,该方法能够产生精确的qSV波行时,即使在三点,并适用于任意强度的介质各向异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Traveltime Computation for qSV Waves in TI Media Using Physics-Informed Neural Networks
Summary Traveltimes corresponding to both compressional and shear waves are needed for many applications in seismology ranging from seismic imaging to earthquake localization. Since the behavior of shear waves in anisotropic media is considerably more complicated than the isotropic case, accurate traveltime computation for shear waves in anisotropic media remains a challenge. Ray tracing methods are often used to compute qSV wave traveltimes but they become unstable around triplication points and, therefore, we often use the weak anisotropy approximation. Here, we employ the emerging paradigm of physics-informed neural networks to solve transversely isotropic eikonal equation for the qSV wave that otherwise are not easily solvable using conventional finite difference methods. By minimizing a loss function formed by imposing the validity of eikonal equation, we train a neural network to produce traveltime solutions that are consistent with the underlying equation. Through tests on synthetic models, we show that the method is capable of producing accurate qSV wave traveltimes even at triplication points and works for arbitrary strength of medium anisotropy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A New Workflow to Enhance Intercept and Gradient Data Quality Seismic Monitoring of the United Downs Deep Geothermal Power Project (UDDGP) Site with Public Seismic Networks The Utility of HLD/NAC to Guide Surfactant Selection and Design Inversion of Explosive Source Land Seismic Data to Determine Source Parameters Efficient Probabilistic Inversion of Induced Earthquake Parameters in 3D Heterogeneous Media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1