基于非混合克里格插值的高光谱图像去条纹

Cencen Pan, Kun Tan, Q. Du, Qinwu Yan, Jianwei Ding
{"title":"基于非混合克里格插值的高光谱图像去条纹","authors":"Cencen Pan, Kun Tan, Q. Du, Qinwu Yan, Jianwei Ding","doi":"10.1109/WHISPERS.2016.8071669","DOIUrl":null,"url":null,"abstract":"Stripes in hyperspectral imagery reduce image quality and limit further applications. In this paper, we propose a novel destriping method. In this method, reference spectra is extracted in VNIR bands and linear unmixing is performed to denoise these bands, and abundance maps derived by VNIR bands are then used to repair SWIR bands. The error term of all the SWIR bands is also calculated, and the kriging interpolation method is used to interpolate error term, deriving the final destriped SWIR images. Destriping results shown that the proposed method outperforms the traditional kriging interpolation with visual inspection and quantitative assessment.","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Hyperspectral image destriping using unmixing-based kriging interpolation\",\"authors\":\"Cencen Pan, Kun Tan, Q. Du, Qinwu Yan, Jianwei Ding\",\"doi\":\"10.1109/WHISPERS.2016.8071669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stripes in hyperspectral imagery reduce image quality and limit further applications. In this paper, we propose a novel destriping method. In this method, reference spectra is extracted in VNIR bands and linear unmixing is performed to denoise these bands, and abundance maps derived by VNIR bands are then used to repair SWIR bands. The error term of all the SWIR bands is also calculated, and the kriging interpolation method is used to interpolate error term, deriving the final destriped SWIR images. Destriping results shown that the proposed method outperforms the traditional kriging interpolation with visual inspection and quantitative assessment.\",\"PeriodicalId\":369281,\"journal\":{\"name\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2016.8071669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

高光谱图像中的条纹降低了图像质量并限制了进一步的应用。本文提出了一种新的去条纹方法。该方法在近红外波段提取参考光谱,对参考光谱进行线性解混去噪,然后利用近红外波段得到的丰度图对SWIR波段进行修复。计算了各波段的误差项,并采用克里金插值法对误差项进行插值,得到最终的去条纹SWIR图像。去条纹结果表明,该方法优于传统的克里格插值视觉检测和定量评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hyperspectral image destriping using unmixing-based kriging interpolation
Stripes in hyperspectral imagery reduce image quality and limit further applications. In this paper, we propose a novel destriping method. In this method, reference spectra is extracted in VNIR bands and linear unmixing is performed to denoise these bands, and abundance maps derived by VNIR bands are then used to repair SWIR bands. The error term of all the SWIR bands is also calculated, and the kriging interpolation method is used to interpolate error term, deriving the final destriped SWIR images. Destriping results shown that the proposed method outperforms the traditional kriging interpolation with visual inspection and quantitative assessment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hyperspectral and color-infrared imaging from ultralight aircraft: Potential to recognize tree species in urban environments Mapping land covers of brussels capital region using spatially enhanced hyperspectral images Morpho-spectral objects classification by hyperspectral airborne imagery Land-cover monitoring using time-series hyperspectral data via fractional-order darwinian particle swarm optimization segmentation Nonnegative CP decomposition of multiangle hyperspectral data: A case study on CRISM observations of Martian ICY surface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1