{"title":"网络物理系统的绿色弹性","authors":"Diaeddin Rimawi","doi":"10.1109/ISSREW55968.2022.00048","DOIUrl":null,"url":null,"abstract":"Cyber-Physical System (CPS) represents systems that join both hardware and software components to perform real-time services. Maintaining the system's reliability is critical to the continuous delivery of these services. However, the CPS running environment is full of uncertainties and can easily lead to performance degradation. As a result, the need for a recovery technique is highly needed to achieve resilience in the system, with keeping in mind that this technique should be as green as possible. This early doctorate proposal, suggests a game theory solution to achieve resilience and green in CPS. Game theory has been known for its fast performance in decision-making, helping the system to choose what maximizes its payoffs. The proposed game model is described over a real-life collaborative artificial intelligence system (CAIS), that involves robots with humans to achieve a common goal. It shows how the expected results of the system will achieve the resilience of CAIS with minimized CO2 footprint.","PeriodicalId":178302,"journal":{"name":"2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Green Resilience of Cyber-Physical Systems\",\"authors\":\"Diaeddin Rimawi\",\"doi\":\"10.1109/ISSREW55968.2022.00048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyber-Physical System (CPS) represents systems that join both hardware and software components to perform real-time services. Maintaining the system's reliability is critical to the continuous delivery of these services. However, the CPS running environment is full of uncertainties and can easily lead to performance degradation. As a result, the need for a recovery technique is highly needed to achieve resilience in the system, with keeping in mind that this technique should be as green as possible. This early doctorate proposal, suggests a game theory solution to achieve resilience and green in CPS. Game theory has been known for its fast performance in decision-making, helping the system to choose what maximizes its payoffs. The proposed game model is described over a real-life collaborative artificial intelligence system (CAIS), that involves robots with humans to achieve a common goal. It shows how the expected results of the system will achieve the resilience of CAIS with minimized CO2 footprint.\",\"PeriodicalId\":178302,\"journal\":{\"name\":\"2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSREW55968.2022.00048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSREW55968.2022.00048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cyber-Physical System (CPS) represents systems that join both hardware and software components to perform real-time services. Maintaining the system's reliability is critical to the continuous delivery of these services. However, the CPS running environment is full of uncertainties and can easily lead to performance degradation. As a result, the need for a recovery technique is highly needed to achieve resilience in the system, with keeping in mind that this technique should be as green as possible. This early doctorate proposal, suggests a game theory solution to achieve resilience and green in CPS. Game theory has been known for its fast performance in decision-making, helping the system to choose what maximizes its payoffs. The proposed game model is described over a real-life collaborative artificial intelligence system (CAIS), that involves robots with humans to achieve a common goal. It shows how the expected results of the system will achieve the resilience of CAIS with minimized CO2 footprint.