{"title":"电动汽车中FSPM的齿槽转矩建模与抑制","authors":"Jiawei Zhou, Ming-Ming Cheng","doi":"10.1109/iSPEC54162.2022.10033005","DOIUrl":null,"url":null,"abstract":"Torque ripple problem is a major constraint to the use of the flux-switching permanent magnet machine (FSPM) in electric vehicle (EV) applications. To solve this problem, this paper firstly analyzed the magnetic field characteristics of the FSPM based on the general airgap field modulation theory (GAFMT) and modeled the torque ripple, especially the cogging torque. Then, a modified disturbance observer (MDOB), which contains a series-connected resonator to enhance the response characteristics in a given frequency, is proposed to achieve a smoother electromagnetic torque and reduce the impact of torque ripple on the EV system. Finally, the finite element analysis (FEA) simulation is given to verify the accuracy of the proposed theoretical torque ripple model, the MATLAB/Simulink simulation is proposed to verify the effectiveness of the proposed control method.","PeriodicalId":129707,"journal":{"name":"2022 IEEE Sustainable Power and Energy Conference (iSPEC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cogging Torque Modelling and Suppression for FSPM in EV application\",\"authors\":\"Jiawei Zhou, Ming-Ming Cheng\",\"doi\":\"10.1109/iSPEC54162.2022.10033005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Torque ripple problem is a major constraint to the use of the flux-switching permanent magnet machine (FSPM) in electric vehicle (EV) applications. To solve this problem, this paper firstly analyzed the magnetic field characteristics of the FSPM based on the general airgap field modulation theory (GAFMT) and modeled the torque ripple, especially the cogging torque. Then, a modified disturbance observer (MDOB), which contains a series-connected resonator to enhance the response characteristics in a given frequency, is proposed to achieve a smoother electromagnetic torque and reduce the impact of torque ripple on the EV system. Finally, the finite element analysis (FEA) simulation is given to verify the accuracy of the proposed theoretical torque ripple model, the MATLAB/Simulink simulation is proposed to verify the effectiveness of the proposed control method.\",\"PeriodicalId\":129707,\"journal\":{\"name\":\"2022 IEEE Sustainable Power and Energy Conference (iSPEC)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Sustainable Power and Energy Conference (iSPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iSPEC54162.2022.10033005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Sustainable Power and Energy Conference (iSPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSPEC54162.2022.10033005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cogging Torque Modelling and Suppression for FSPM in EV application
Torque ripple problem is a major constraint to the use of the flux-switching permanent magnet machine (FSPM) in electric vehicle (EV) applications. To solve this problem, this paper firstly analyzed the magnetic field characteristics of the FSPM based on the general airgap field modulation theory (GAFMT) and modeled the torque ripple, especially the cogging torque. Then, a modified disturbance observer (MDOB), which contains a series-connected resonator to enhance the response characteristics in a given frequency, is proposed to achieve a smoother electromagnetic torque and reduce the impact of torque ripple on the EV system. Finally, the finite element analysis (FEA) simulation is given to verify the accuracy of the proposed theoretical torque ripple model, the MATLAB/Simulink simulation is proposed to verify the effectiveness of the proposed control method.