基于状态的维修在制造业中的实施-一个试点案例研究

A. Rastegari, M. Bengtsson
{"title":"基于状态的维修在制造业中的实施-一个试点案例研究","authors":"A. Rastegari, M. Bengtsson","doi":"10.1109/ICPHM.2014.7036377","DOIUrl":null,"url":null,"abstract":"This paper presents a guide for implementation of Condition Based Maintenance (CBM) in a manufacturing industry, considering the technical constituents and organizational aspects when implementing CBM. The empirical base for the study is a case study from a major manufacturing site in Sweden. The data was collected during a pilot project to implement CBM at the case company. The purpose of the pilot study at the company was to implement online condition monitoring on some of the critical components in the hardening process. Hereby, two of the main online condition monitoring techniques namely vibration analysis and Shock Pulse Method (SPM) have been implemented and tested on electric motors to monitor bearing conditions. The paper presents the process of implementation and the elements included in this process. Some of the main elements in the implementation process are selection of the components to be monitored, techniques and technologies as well as installation of the technologies and finally how to analyze the results from the condition monitoring. The data from online condition monitoring on the electric motors, driving the furnace fans, are recorded and presented in the paper including breakdown data on two objects. This information is leading to useful and reliable knowledge for maintenance work to be cost effective and be able to increase the overall equipment availability (OEA). In addition to this, the result indicates to what extent advanced CBM practices are applicable in the hardening environment in the manufacturing company and it provides guidance for further research and development in this area. The paper concludes with a discussion on possible future trends and research areas, needed to increase the effective and efficient use of CBM.","PeriodicalId":376942,"journal":{"name":"2014 International Conference on Prognostics and Health Management","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Implementation of Condition Based Maintenance in manufacturing industry - A pilot case study\",\"authors\":\"A. Rastegari, M. Bengtsson\",\"doi\":\"10.1109/ICPHM.2014.7036377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a guide for implementation of Condition Based Maintenance (CBM) in a manufacturing industry, considering the technical constituents and organizational aspects when implementing CBM. The empirical base for the study is a case study from a major manufacturing site in Sweden. The data was collected during a pilot project to implement CBM at the case company. The purpose of the pilot study at the company was to implement online condition monitoring on some of the critical components in the hardening process. Hereby, two of the main online condition monitoring techniques namely vibration analysis and Shock Pulse Method (SPM) have been implemented and tested on electric motors to monitor bearing conditions. The paper presents the process of implementation and the elements included in this process. Some of the main elements in the implementation process are selection of the components to be monitored, techniques and technologies as well as installation of the technologies and finally how to analyze the results from the condition monitoring. The data from online condition monitoring on the electric motors, driving the furnace fans, are recorded and presented in the paper including breakdown data on two objects. This information is leading to useful and reliable knowledge for maintenance work to be cost effective and be able to increase the overall equipment availability (OEA). In addition to this, the result indicates to what extent advanced CBM practices are applicable in the hardening environment in the manufacturing company and it provides guidance for further research and development in this area. The paper concludes with a discussion on possible future trends and research areas, needed to increase the effective and efficient use of CBM.\",\"PeriodicalId\":376942,\"journal\":{\"name\":\"2014 International Conference on Prognostics and Health Management\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Prognostics and Health Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPHM.2014.7036377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Prognostics and Health Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM.2014.7036377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文介绍了在制造业中实施基于状态的维护(CBM)的指南,考虑了实施CBM时的技术组成部分和组织方面。本研究的实证基础是瑞典一个主要制造基地的案例研究。这些数据是在案例公司实施CBM的试点项目期间收集的。该公司试点研究的目的是对硬化过程中的一些关键部件进行在线状态监测。为此,对两种主要的在线状态监测技术即振动分析和冲击脉冲法(SPM)在电动机上进行了实现和测试,以监测轴承状态。本文介绍了该方案的实施过程以及实施过程中所包含的要素。实施过程中的一些主要内容是要监测的部件,技术和技术的选择以及技术的安装,最后是如何分析状态监测的结果。本文记录并介绍了驱动电炉风机的电动机在线状态监测数据,包括两个对象的击穿数据。这些信息为维护工作提供了有用和可靠的知识,使其具有成本效益,并能够提高整体设备可用性(OEA)。此外,该结果还表明了先进的煤层气实践在制造企业硬化环境中的适用程度,并为该领域的进一步研究和开发提供了指导。论文最后讨论了未来可能的趋势和研究领域,以提高CBM的有效和高效利用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implementation of Condition Based Maintenance in manufacturing industry - A pilot case study
This paper presents a guide for implementation of Condition Based Maintenance (CBM) in a manufacturing industry, considering the technical constituents and organizational aspects when implementing CBM. The empirical base for the study is a case study from a major manufacturing site in Sweden. The data was collected during a pilot project to implement CBM at the case company. The purpose of the pilot study at the company was to implement online condition monitoring on some of the critical components in the hardening process. Hereby, two of the main online condition monitoring techniques namely vibration analysis and Shock Pulse Method (SPM) have been implemented and tested on electric motors to monitor bearing conditions. The paper presents the process of implementation and the elements included in this process. Some of the main elements in the implementation process are selection of the components to be monitored, techniques and technologies as well as installation of the technologies and finally how to analyze the results from the condition monitoring. The data from online condition monitoring on the electric motors, driving the furnace fans, are recorded and presented in the paper including breakdown data on two objects. This information is leading to useful and reliable knowledge for maintenance work to be cost effective and be able to increase the overall equipment availability (OEA). In addition to this, the result indicates to what extent advanced CBM practices are applicable in the hardening environment in the manufacturing company and it provides guidance for further research and development in this area. The paper concludes with a discussion on possible future trends and research areas, needed to increase the effective and efficient use of CBM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detection and classification for faults in drilling process using vibration analysis Prognostics model for tool life prediction in milling using texture features of surface image data Development of asset fault signatures for Prognostic and Health Management in the nuclear industry A model-based fault injection system for aerocraft wing structure Robust multivariate statistical ensembles for bearing fault detection and identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1