属性导向的深度极化热可见人脸识别

S. M. Iranmanesh, N. Nasrabadi
{"title":"属性导向的深度极化热可见人脸识别","authors":"S. M. Iranmanesh, N. Nasrabadi","doi":"10.1109/ICB45273.2019.8987416","DOIUrl":null,"url":null,"abstract":"In this paper, we present an attribute-guided deep coupled learning framework to address the problem of matching polarimetric thermal face photos against a gallery of visible faces. The coupled framework contains two sub-networks, one dedicated to the visible spectrum and the second sub-network dedicated to the polarimetric thermal spectrum. Each sub-network is made of a generative adversarial network (GAN) architecture. We propose a novel Attribute-Guided Coupled Generative Adversarial Network (AGC-GAN) architecture which utilizes facial attributes to improve the thermal-to-visible face recognition performance. The proposed AGC-GAN exploits the facial attributes and leverages multiple loss functions in order to learn rich discriminative features in a common embedding subspace. To achieve a realistic photo reconstruction while preserving the discriminative information, we also add a perceptual loss term to the coupling loss function. An ablation study is performed to show the effectiveness of different loss functions for optimizing the proposed method. Moreover, the superiority of the model compared to the state-ofthe-art models is demonstrated using polarimetric dataset.","PeriodicalId":430846,"journal":{"name":"2019 International Conference on Biometrics (ICB)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Attribute-Guided Deep Polarimetric Thermal-to-visible Face Recognition\",\"authors\":\"S. M. Iranmanesh, N. Nasrabadi\",\"doi\":\"10.1109/ICB45273.2019.8987416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an attribute-guided deep coupled learning framework to address the problem of matching polarimetric thermal face photos against a gallery of visible faces. The coupled framework contains two sub-networks, one dedicated to the visible spectrum and the second sub-network dedicated to the polarimetric thermal spectrum. Each sub-network is made of a generative adversarial network (GAN) architecture. We propose a novel Attribute-Guided Coupled Generative Adversarial Network (AGC-GAN) architecture which utilizes facial attributes to improve the thermal-to-visible face recognition performance. The proposed AGC-GAN exploits the facial attributes and leverages multiple loss functions in order to learn rich discriminative features in a common embedding subspace. To achieve a realistic photo reconstruction while preserving the discriminative information, we also add a perceptual loss term to the coupling loss function. An ablation study is performed to show the effectiveness of different loss functions for optimizing the proposed method. Moreover, the superiority of the model compared to the state-ofthe-art models is demonstrated using polarimetric dataset.\",\"PeriodicalId\":430846,\"journal\":{\"name\":\"2019 International Conference on Biometrics (ICB)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Biometrics (ICB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICB45273.2019.8987416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB45273.2019.8987416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在本文中,我们提出了一个属性导向的深度耦合学习框架来解决极化热人脸照片与可见人脸库的匹配问题。耦合框架包含两个子网络,一个专用于可见光谱,另一个专用于极化热光谱。每个子网络由生成对抗网络(GAN)架构组成。我们提出了一种新的属性导向耦合生成对抗网络(AGC-GAN)架构,该架构利用人脸属性来提高热可见人脸识别性能。本文提出的AGC-GAN利用人脸属性,并利用多个损失函数在公共嵌入子空间中学习丰富的判别特征。为了在保留判别信息的同时实现真实的照片重建,我们还在耦合损失函数中添加了感知损失项。通过烧蚀实验证明了不同损失函数对优化方法的有效性。此外,利用极化数据集证明了该模型与目前最先进模型相比的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Attribute-Guided Deep Polarimetric Thermal-to-visible Face Recognition
In this paper, we present an attribute-guided deep coupled learning framework to address the problem of matching polarimetric thermal face photos against a gallery of visible faces. The coupled framework contains two sub-networks, one dedicated to the visible spectrum and the second sub-network dedicated to the polarimetric thermal spectrum. Each sub-network is made of a generative adversarial network (GAN) architecture. We propose a novel Attribute-Guided Coupled Generative Adversarial Network (AGC-GAN) architecture which utilizes facial attributes to improve the thermal-to-visible face recognition performance. The proposed AGC-GAN exploits the facial attributes and leverages multiple loss functions in order to learn rich discriminative features in a common embedding subspace. To achieve a realistic photo reconstruction while preserving the discriminative information, we also add a perceptual loss term to the coupling loss function. An ablation study is performed to show the effectiveness of different loss functions for optimizing the proposed method. Moreover, the superiority of the model compared to the state-ofthe-art models is demonstrated using polarimetric dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PPG2Live: Using dual PPG for active authentication and liveness detection A New Approach for EEG-Based Biometric Authentication Using Auditory Stimulation A novel scheme to address the fusion uncertainty in multi-modal continuous authentication schemes on mobile devices Sclera Segmentation Benchmarking Competition in Cross-resolution Environment Fingerprint Presentation Attack Detection utilizing Time-Series, Color Fingerprint Captures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1