用知识工程应对数字农业挑战

Marcelo Nery, R. Santos, W. Santos, Vítor Lourenço, M. Moreno
{"title":"用知识工程应对数字农业挑战","authors":"Marcelo Nery, R. Santos, W. Santos, Vítor Lourenço, M. Moreno","doi":"10.1109/AI4I.2018.8665708","DOIUrl":null,"url":null,"abstract":"Knowledge Engineering is key to enable knowledge extraction, representation and reasoning, leading to better business insights and decisions. Current advances in machine learning and new trends in AI are bringing a plethora of algorithms capable of performing advanced pattern recognition and data classification. The ability to link, to organize and to query the outputs of these algorithms as well as the ability to handle huge amounts of data and its multiple sources is crucial to maximize the potential of such advances, specially over large datasets. This paper presents challenges in the context of digital agriculture and our position in moving forward with these capabilities whilst using knowledge engineering techniques.","PeriodicalId":133657,"journal":{"name":"2018 First International Conference on Artificial Intelligence for Industries (AI4I)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Facing Digital Agriculture Challenges with Knowledge Engineering\",\"authors\":\"Marcelo Nery, R. Santos, W. Santos, Vítor Lourenço, M. Moreno\",\"doi\":\"10.1109/AI4I.2018.8665708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge Engineering is key to enable knowledge extraction, representation and reasoning, leading to better business insights and decisions. Current advances in machine learning and new trends in AI are bringing a plethora of algorithms capable of performing advanced pattern recognition and data classification. The ability to link, to organize and to query the outputs of these algorithms as well as the ability to handle huge amounts of data and its multiple sources is crucial to maximize the potential of such advances, specially over large datasets. This paper presents challenges in the context of digital agriculture and our position in moving forward with these capabilities whilst using knowledge engineering techniques.\",\"PeriodicalId\":133657,\"journal\":{\"name\":\"2018 First International Conference on Artificial Intelligence for Industries (AI4I)\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 First International Conference on Artificial Intelligence for Industries (AI4I)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AI4I.2018.8665708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 First International Conference on Artificial Intelligence for Industries (AI4I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AI4I.2018.8665708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

知识工程是实现知识提取、表示和推理的关键,从而产生更好的业务见解和决策。当前机器学习的进步和人工智能的新趋势带来了大量能够执行高级模式识别和数据分类的算法。链接、组织和查询这些算法输出的能力,以及处理大量数据及其多个来源的能力,对于最大限度地发挥这些进步的潜力至关重要,特别是在大型数据集上。本文提出了数字农业背景下的挑战,以及我们在利用知识工程技术推进这些能力方面的地位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Facing Digital Agriculture Challenges with Knowledge Engineering
Knowledge Engineering is key to enable knowledge extraction, representation and reasoning, leading to better business insights and decisions. Current advances in machine learning and new trends in AI are bringing a plethora of algorithms capable of performing advanced pattern recognition and data classification. The ability to link, to organize and to query the outputs of these algorithms as well as the ability to handle huge amounts of data and its multiple sources is crucial to maximize the potential of such advances, specially over large datasets. This paper presents challenges in the context of digital agriculture and our position in moving forward with these capabilities whilst using knowledge engineering techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assisting Seismic Image Interpretations with Hyperknowledge Applying Machine Learning to Service Assurance in Network Function Virtualization Environment Combinatorial Algorithms in Machine Learning AI Application to Data Analysis, Automatic File Processing Multi-Layer Nested Scatter Plot a Data Wrangling Method for Correlated Multi-Channel Time Series Signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1