{"title":"双曲面的共形能量估计和自引力场的波-克莱因-戈登模型","authors":"Senhao Duan, Yue Ma, Weidong Zhang","doi":"10.3934/cam.2023007","DOIUrl":null,"url":null,"abstract":"In this article we revisit the global existence result of the wave-Klein-Gordon model of the system of the self-gravitating massive field. Our new observation is that, by applying the conformal energy estimates on hyperboloids, we obtain mildly increasing energy estimate up to the top order for the Klein-Gordon component, which clarify the question on the hierarchy of the energy bounds of the Klein-Gordon component in our previous work. Furthermore, a uniform-in-time energy estimate is established for the wave component up to the top order, as well as a scattering result. These improvements indicate that the partial conformal symmetry of the Einstein-massive scalar system will play an important role in the global analysis.","PeriodicalId":233941,"journal":{"name":"Communications in Analysis and Mechanics","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conformal-type energy estimates on hyperboloids and the wave-Klein-Gordon model of self-gravitating massive fields\",\"authors\":\"Senhao Duan, Yue Ma, Weidong Zhang\",\"doi\":\"10.3934/cam.2023007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we revisit the global existence result of the wave-Klein-Gordon model of the system of the self-gravitating massive field. Our new observation is that, by applying the conformal energy estimates on hyperboloids, we obtain mildly increasing energy estimate up to the top order for the Klein-Gordon component, which clarify the question on the hierarchy of the energy bounds of the Klein-Gordon component in our previous work. Furthermore, a uniform-in-time energy estimate is established for the wave component up to the top order, as well as a scattering result. These improvements indicate that the partial conformal symmetry of the Einstein-massive scalar system will play an important role in the global analysis.\",\"PeriodicalId\":233941,\"journal\":{\"name\":\"Communications in Analysis and Mechanics\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Analysis and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/cam.2023007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cam.2023007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Conformal-type energy estimates on hyperboloids and the wave-Klein-Gordon model of self-gravitating massive fields
In this article we revisit the global existence result of the wave-Klein-Gordon model of the system of the self-gravitating massive field. Our new observation is that, by applying the conformal energy estimates on hyperboloids, we obtain mildly increasing energy estimate up to the top order for the Klein-Gordon component, which clarify the question on the hierarchy of the energy bounds of the Klein-Gordon component in our previous work. Furthermore, a uniform-in-time energy estimate is established for the wave component up to the top order, as well as a scattering result. These improvements indicate that the partial conformal symmetry of the Einstein-massive scalar system will play an important role in the global analysis.