{"title":"利用Rprop求解圆形面积约束下的欧氏多设施定位问题","authors":"G. M. Nasira, T. Balaji","doi":"10.1504/IJAISC.2015.070631","DOIUrl":null,"url":null,"abstract":"The present work considers multifacility location problems with circular area constraints having interactions between sources and destinations. A detailed literature survey reveals that a little attention has been paid to problem involving area constraints. Mathematical formulation and the analytical solutions have been obtained by using Kuhn-Tucker theory. The mathematical solution procedure is very complex and time consuming. Hence, an attempt has been made to get the solution of a complex, constrained multifacility location problem using artificial neural networks ANN. With the help of numerical examples, it has been established that within the acceptable limits resilient back-propagation Rprop model compares well with those obtained through analytical method.","PeriodicalId":364571,"journal":{"name":"Int. J. Artif. Intell. Soft Comput.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving Euclidean multifacility location problems under circular area constraints using Rprop\",\"authors\":\"G. M. Nasira, T. Balaji\",\"doi\":\"10.1504/IJAISC.2015.070631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work considers multifacility location problems with circular area constraints having interactions between sources and destinations. A detailed literature survey reveals that a little attention has been paid to problem involving area constraints. Mathematical formulation and the analytical solutions have been obtained by using Kuhn-Tucker theory. The mathematical solution procedure is very complex and time consuming. Hence, an attempt has been made to get the solution of a complex, constrained multifacility location problem using artificial neural networks ANN. With the help of numerical examples, it has been established that within the acceptable limits resilient back-propagation Rprop model compares well with those obtained through analytical method.\",\"PeriodicalId\":364571,\"journal\":{\"name\":\"Int. J. Artif. Intell. Soft Comput.\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Artif. Intell. Soft Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJAISC.2015.070631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Artif. Intell. Soft Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJAISC.2015.070631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Solving Euclidean multifacility location problems under circular area constraints using Rprop
The present work considers multifacility location problems with circular area constraints having interactions between sources and destinations. A detailed literature survey reveals that a little attention has been paid to problem involving area constraints. Mathematical formulation and the analytical solutions have been obtained by using Kuhn-Tucker theory. The mathematical solution procedure is very complex and time consuming. Hence, an attempt has been made to get the solution of a complex, constrained multifacility location problem using artificial neural networks ANN. With the help of numerical examples, it has been established that within the acceptable limits resilient back-propagation Rprop model compares well with those obtained through analytical method.