Markus Borg, O. Svensson, Kristian Berg, Daniel Hansson
{"title":"SZZ释放:SZZ算法的开放实现-在Jenkins项目的实时错误预测研究中提供示例使用","authors":"Markus Borg, O. Svensson, Kristian Berg, Daniel Hansson","doi":"10.1145/3340482.3342742","DOIUrl":null,"url":null,"abstract":"Machine learning applications in software engineering often rely on detailed information about bugs. While issue trackers often contain information about when bugs were fixed, details about when they were introduced to the system are often absent. As a remedy, researchers often rely on the SZZ algorithm as a heuristic approach to identify bug-introducing software changes. Unfortunately, as reported in a recent systematic literature review, few researchers have made their SZZ implementations publicly available. Consequently, there is a risk that research effort is wasted as new projects based on SZZ output need to initially reimplement the approach. Furthermore, there is a risk that newly developed (closed source) SZZ implementations have not been properly tested, thus conducting research based on their output might introduce threats to validity. We present SZZ Unleashed, an open implementation of the SZZ algorithm for git repositories. This paper describes our implementation along with a usage example for the Jenkins project, and conclude with an illustrative study on just-in-time bug prediction. We hope to continue evolving SZZ Unleashed on GitHub, and warmly invite the community to contribute.","PeriodicalId":254040,"journal":{"name":"Proceedings of the 3rd ACM SIGSOFT International Workshop on Machine Learning Techniques for Software Quality Evaluation","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":"{\"title\":\"SZZ unleashed: an open implementation of the SZZ algorithm - featuring example usage in a study of just-in-time bug prediction for the Jenkins project\",\"authors\":\"Markus Borg, O. Svensson, Kristian Berg, Daniel Hansson\",\"doi\":\"10.1145/3340482.3342742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning applications in software engineering often rely on detailed information about bugs. While issue trackers often contain information about when bugs were fixed, details about when they were introduced to the system are often absent. As a remedy, researchers often rely on the SZZ algorithm as a heuristic approach to identify bug-introducing software changes. Unfortunately, as reported in a recent systematic literature review, few researchers have made their SZZ implementations publicly available. Consequently, there is a risk that research effort is wasted as new projects based on SZZ output need to initially reimplement the approach. Furthermore, there is a risk that newly developed (closed source) SZZ implementations have not been properly tested, thus conducting research based on their output might introduce threats to validity. We present SZZ Unleashed, an open implementation of the SZZ algorithm for git repositories. This paper describes our implementation along with a usage example for the Jenkins project, and conclude with an illustrative study on just-in-time bug prediction. We hope to continue evolving SZZ Unleashed on GitHub, and warmly invite the community to contribute.\",\"PeriodicalId\":254040,\"journal\":{\"name\":\"Proceedings of the 3rd ACM SIGSOFT International Workshop on Machine Learning Techniques for Software Quality Evaluation\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"69\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd ACM SIGSOFT International Workshop on Machine Learning Techniques for Software Quality Evaluation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3340482.3342742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd ACM SIGSOFT International Workshop on Machine Learning Techniques for Software Quality Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3340482.3342742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SZZ unleashed: an open implementation of the SZZ algorithm - featuring example usage in a study of just-in-time bug prediction for the Jenkins project
Machine learning applications in software engineering often rely on detailed information about bugs. While issue trackers often contain information about when bugs were fixed, details about when they were introduced to the system are often absent. As a remedy, researchers often rely on the SZZ algorithm as a heuristic approach to identify bug-introducing software changes. Unfortunately, as reported in a recent systematic literature review, few researchers have made their SZZ implementations publicly available. Consequently, there is a risk that research effort is wasted as new projects based on SZZ output need to initially reimplement the approach. Furthermore, there is a risk that newly developed (closed source) SZZ implementations have not been properly tested, thus conducting research based on their output might introduce threats to validity. We present SZZ Unleashed, an open implementation of the SZZ algorithm for git repositories. This paper describes our implementation along with a usage example for the Jenkins project, and conclude with an illustrative study on just-in-time bug prediction. We hope to continue evolving SZZ Unleashed on GitHub, and warmly invite the community to contribute.