便携式VIS-NIR光谱仪开集食品粉末分类研究

H. You, Hyung-jik Kim, Dong-Kyun Joo, Seung Min Lee, Jeongung Kim, Sunwoong Choi
{"title":"便携式VIS-NIR光谱仪开集食品粉末分类研究","authors":"H. You, Hyung-jik Kim, Dong-Kyun Joo, Seung Min Lee, Jeongung Kim, Sunwoong Choi","doi":"10.1109/ICAIIC.2019.8668992","DOIUrl":null,"url":null,"abstract":"Near Infrared (NIR) spectroscopy is fast and non-destructive methods for analyzing materials without pretreatment. Especially as portable NIR spectrometers have been developed, the research of spectral analysis has applied to various open environment and field. In this paper, we classify visually indistinguishable eight food powders using portable VIS-NIR spectrometer with a wavelength range of 450 to 1000 nm with CNN (Convolutional Neural Network), one of the machine learnings. Further we consider open set recognition where unknown classes should be rejected at test time. The proposed CNN model achieved an accuracy of 100% for eight food powders, and 91.2% with open set. Our experimental results demonstrate the potential of material analysis using a portable VIS-NIR spectrometer with machine learning.","PeriodicalId":273383,"journal":{"name":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Classification of Food Powders with Open Set using Portable VIS-NIR Spectrometer\",\"authors\":\"H. You, Hyung-jik Kim, Dong-Kyun Joo, Seung Min Lee, Jeongung Kim, Sunwoong Choi\",\"doi\":\"10.1109/ICAIIC.2019.8668992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Near Infrared (NIR) spectroscopy is fast and non-destructive methods for analyzing materials without pretreatment. Especially as portable NIR spectrometers have been developed, the research of spectral analysis has applied to various open environment and field. In this paper, we classify visually indistinguishable eight food powders using portable VIS-NIR spectrometer with a wavelength range of 450 to 1000 nm with CNN (Convolutional Neural Network), one of the machine learnings. Further we consider open set recognition where unknown classes should be rejected at test time. The proposed CNN model achieved an accuracy of 100% for eight food powders, and 91.2% with open set. Our experimental results demonstrate the potential of material analysis using a portable VIS-NIR spectrometer with machine learning.\",\"PeriodicalId\":273383,\"journal\":{\"name\":\"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIIC.2019.8668992\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC.2019.8668992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

近红外光谱是一种快速、无损的分析材料的方法,无需预处理。特别是随着便携式近红外光谱仪的发展,光谱分析研究已应用于各种开放环境和领域。在本文中,我们使用波长范围为450 ~ 1000 nm的便携式VIS-NIR光谱仪,结合机器学习中的一种CNN(卷积神经网络)对视觉上难以区分的8种食品粉末进行分类。我们进一步考虑开放集识别,在测试时拒绝未知类。本文提出的CNN模型对8种食品粉的准确率为100%,对open set的准确率为91.2%。我们的实验结果证明了使用具有机器学习功能的便携式VIS-NIR光谱仪进行材料分析的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of Food Powders with Open Set using Portable VIS-NIR Spectrometer
Near Infrared (NIR) spectroscopy is fast and non-destructive methods for analyzing materials without pretreatment. Especially as portable NIR spectrometers have been developed, the research of spectral analysis has applied to various open environment and field. In this paper, we classify visually indistinguishable eight food powders using portable VIS-NIR spectrometer with a wavelength range of 450 to 1000 nm with CNN (Convolutional Neural Network), one of the machine learnings. Further we consider open set recognition where unknown classes should be rejected at test time. The proposed CNN model achieved an accuracy of 100% for eight food powders, and 91.2% with open set. Our experimental results demonstrate the potential of material analysis using a portable VIS-NIR spectrometer with machine learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stock Prices Prediction using the Title of Newspaper Articles with Korean Natural Language Processing Deep learning based decomposition of brain networks Simulation on Delay of Several Random Access Schemes A Machine-Learning-Based Channel Assignment Algorithm for IoT The Properties of mode prediction using mean root error for regularization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1