低压蓄电池车载充电器在大功率电动汽车上的适用性研究

D. Gerling, S. Zeljkovic, Radovan Vuletic
{"title":"低压蓄电池车载充电器在大功率电动汽车上的适用性研究","authors":"D. Gerling, S. Zeljkovic, Radovan Vuletic","doi":"10.1109/IEVC.2014.7056097","DOIUrl":null,"url":null,"abstract":"This paper analyzes an 11kW three phase on-board charger in case of prospective high power electric vehicles powered by low voltage traction battery (LV, e.g. 24V or 48V). The charger design is compared to the one in present-day electric passenger vehicles that use high voltage batteries (e.g. Tesla Model S). The analyses show that the main difference appears in the design and operation of the output stage of the isolated DC/DC converter, whereas performance of the PFC stage in both cases is comparable. First, the assessment of differences in the topology choice and in related design considerations is given. Consequently, the selection of semiconductor components for an exemplary topology is presented, followed by the efficiency-to-cost ratio analysis. Although no significant cost change is to be expected in case of LV battery chargers for high power vehicles, the LV system introduces distinguishing advantage by eliminating the need for an isolated HV to LV DC/DC converter, followed by the possibility for the space, loss and cost reduction.","PeriodicalId":223794,"journal":{"name":"2014 IEEE International Electric Vehicle Conference (IEVC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An applicability study of LV battery on-board chargers for high power EVs\",\"authors\":\"D. Gerling, S. Zeljkovic, Radovan Vuletic\",\"doi\":\"10.1109/IEVC.2014.7056097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper analyzes an 11kW three phase on-board charger in case of prospective high power electric vehicles powered by low voltage traction battery (LV, e.g. 24V or 48V). The charger design is compared to the one in present-day electric passenger vehicles that use high voltage batteries (e.g. Tesla Model S). The analyses show that the main difference appears in the design and operation of the output stage of the isolated DC/DC converter, whereas performance of the PFC stage in both cases is comparable. First, the assessment of differences in the topology choice and in related design considerations is given. Consequently, the selection of semiconductor components for an exemplary topology is presented, followed by the efficiency-to-cost ratio analysis. Although no significant cost change is to be expected in case of LV battery chargers for high power vehicles, the LV system introduces distinguishing advantage by eliminating the need for an isolated HV to LV DC/DC converter, followed by the possibility for the space, loss and cost reduction.\",\"PeriodicalId\":223794,\"journal\":{\"name\":\"2014 IEEE International Electric Vehicle Conference (IEVC)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Electric Vehicle Conference (IEVC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEVC.2014.7056097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Electric Vehicle Conference (IEVC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEVC.2014.7056097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文分析了一种11kW三相车载充电器,适用于未来使用低压牵引蓄电池(如24V或48V)供电的大功率电动汽车。充电器设计与目前使用高压电池的电动乘用车(例如特斯拉Model S)的充电器设计进行了比较。分析表明,主要区别在于隔离DC/DC转换器的输出级的设计和操作,而两种情况下PFC级的性能是相当的。首先,给出了拓扑选择和相关设计考虑因素的差异评估。因此,提出了示例拓扑的半导体元件的选择,然后进行了效率-成本比分析。虽然对于大功率车辆的低压电池充电器来说,预计成本不会发生重大变化,但低压系统的独特优势在于,它消除了对隔离的高压到低压DC/DC转换器的需求,从而有可能减少空间、损耗和成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An applicability study of LV battery on-board chargers for high power EVs
This paper analyzes an 11kW three phase on-board charger in case of prospective high power electric vehicles powered by low voltage traction battery (LV, e.g. 24V or 48V). The charger design is compared to the one in present-day electric passenger vehicles that use high voltage batteries (e.g. Tesla Model S). The analyses show that the main difference appears in the design and operation of the output stage of the isolated DC/DC converter, whereas performance of the PFC stage in both cases is comparable. First, the assessment of differences in the topology choice and in related design considerations is given. Consequently, the selection of semiconductor components for an exemplary topology is presented, followed by the efficiency-to-cost ratio analysis. Although no significant cost change is to be expected in case of LV battery chargers for high power vehicles, the LV system introduces distinguishing advantage by eliminating the need for an isolated HV to LV DC/DC converter, followed by the possibility for the space, loss and cost reduction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Present and future applications of supercapacitors in electric and hybrid vehicles Robust optimization based EV charging An intelligent solar powered battery buffered EV charging station with solar electricity forecasting and EV charging load projection functions Seasonal impacts of EV charging on rural grids Investigation of series-parallel connections of multi-module batteries for electrified vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1