机器移情:数字化人类情感

A. Roshdy, S. A. Kork, A. Karar, A. Sabi, Z. A. Barakeh, Fahmi ElSayed, T. Beyrouthy, A. Naït-Ali
{"title":"机器移情:数字化人类情感","authors":"A. Roshdy, S. A. Kork, A. Karar, A. Sabi, Z. A. Barakeh, Fahmi ElSayed, T. Beyrouthy, A. Naït-Ali","doi":"10.1145/3459104.3459154","DOIUrl":null,"url":null,"abstract":"The primary objective of this work is to emulate machine empathy through digitizing human emotions. A simple proofof-concept experiment is conducted, where a brain-computer interface (BCI) captures the brain's electroencephalogram (EEG) signals using an Emotiv Epoc headset. A two dimensional (2D) intensity (heat) map of the brain's EEG is obtained for a pre-defined set of an emotional stimulus, namely excitement and stress. An artificial neural network (ANN) is subsequently used for classifying the 2D image. The key contribution of this work is to leverage the already powerful and mature tools for image recognition developed in ANN systems for emotion recognition through adapting the 2D intensity map of the EEG brain activity. The resulting BCI system was set-up to control a surrogate humanoid robot, allowing the robot to emulate empathy and interact with the subject according to pre-defined behavioural models. The ANN classifier exhibited an accuracy of 87.5% for recognizing two of the emotional states targeted in this study.","PeriodicalId":142284,"journal":{"name":"2021 International Symposium on Electrical, Electronics and Information Engineering","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Machine Empathy: Digitizing Human Emotions\",\"authors\":\"A. Roshdy, S. A. Kork, A. Karar, A. Sabi, Z. A. Barakeh, Fahmi ElSayed, T. Beyrouthy, A. Naït-Ali\",\"doi\":\"10.1145/3459104.3459154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The primary objective of this work is to emulate machine empathy through digitizing human emotions. A simple proofof-concept experiment is conducted, where a brain-computer interface (BCI) captures the brain's electroencephalogram (EEG) signals using an Emotiv Epoc headset. A two dimensional (2D) intensity (heat) map of the brain's EEG is obtained for a pre-defined set of an emotional stimulus, namely excitement and stress. An artificial neural network (ANN) is subsequently used for classifying the 2D image. The key contribution of this work is to leverage the already powerful and mature tools for image recognition developed in ANN systems for emotion recognition through adapting the 2D intensity map of the EEG brain activity. The resulting BCI system was set-up to control a surrogate humanoid robot, allowing the robot to emulate empathy and interact with the subject according to pre-defined behavioural models. The ANN classifier exhibited an accuracy of 87.5% for recognizing two of the emotional states targeted in this study.\",\"PeriodicalId\":142284,\"journal\":{\"name\":\"2021 International Symposium on Electrical, Electronics and Information Engineering\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Symposium on Electrical, Electronics and Information Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3459104.3459154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Symposium on Electrical, Electronics and Information Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459104.3459154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

这项工作的主要目标是通过数字化人类情感来模拟机器移情。进行了一个简单的概念验证实验,其中脑机接口(BCI)使用Emotiv Epoc耳机捕获大脑的脑电图(EEG)信号。对于预先定义的一组情绪刺激,即兴奋和压力,可以获得大脑脑电图的二维(2D)强度(热)图。随后使用人工神经网络(ANN)对二维图像进行分类。这项工作的关键贡献是利用人工神经网络系统中已经强大和成熟的图像识别工具,通过调整脑电图大脑活动的二维强度图来进行情绪识别。由此产生的脑机接口系统被用来控制一个代理人形机器人,允许机器人模仿同理心,并根据预先定义的行为模型与受试者互动。人工神经网络分类器在识别本研究中针对的两种情绪状态方面显示出87.5%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Empathy: Digitizing Human Emotions
The primary objective of this work is to emulate machine empathy through digitizing human emotions. A simple proofof-concept experiment is conducted, where a brain-computer interface (BCI) captures the brain's electroencephalogram (EEG) signals using an Emotiv Epoc headset. A two dimensional (2D) intensity (heat) map of the brain's EEG is obtained for a pre-defined set of an emotional stimulus, namely excitement and stress. An artificial neural network (ANN) is subsequently used for classifying the 2D image. The key contribution of this work is to leverage the already powerful and mature tools for image recognition developed in ANN systems for emotion recognition through adapting the 2D intensity map of the EEG brain activity. The resulting BCI system was set-up to control a surrogate humanoid robot, allowing the robot to emulate empathy and interact with the subject according to pre-defined behavioural models. The ANN classifier exhibited an accuracy of 87.5% for recognizing two of the emotional states targeted in this study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Integration of Blockchain Technology and IoT in a Smart University Application Architecture 3D Moving Rigid Body Localization in the Presence of Anchor Position Errors RANS/LES Simulation of Low-Frequency Flow Oscillations on a NACA0012 Airfoil Near Stall Tuning Language Representation Models for Classification of Turkish News Improving Consumer Experience for Medical Information Using Text Analytics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1