温度对稠油储层气/油相对渗透率的影响

Saket Kumar, H. Sarma, B. Maini
{"title":"温度对稠油储层气/油相对渗透率的影响","authors":"Saket Kumar, H. Sarma, B. Maini","doi":"10.2118/208897-ms","DOIUrl":null,"url":null,"abstract":"\n Oil displacement tests were carried out in a 45-cm long sand-pack at temperatures ranging from 64 to 217 °C using a viscous oil (PAO-100), deionized water and nitrogen gas. It was found that the unsteady-state method was susceptible to several experimental artifacts in viscous oil systems due to a very adverse mobility ratio. However, despite such experimental artifacts, a careful analysis of the displacement data led to obtaining meaningful two-phase gas/oil relative permeability curves. These curves were used to assess the effect of temperature on gas/oil relative permeability in viscous oil systems.\n We employed a new systematic algorithm to successfully implement a history matching scheme to infer the two-phase gas/heavy oil relative permeabilities from the core-flood data. We noted that at the end of the gas flooding, the \"final\" residual oil saturation still eluded us even after tens of pore volumes of gas injection. This rendered the experimentally determined endpoint gas relative permeability (krge) and Sor unreliable. In contrast, the irreducible water saturation (Swir) and the endpoint oil relative permeability (kroe) were experimentally achievable.\n A history-matching technique was used to determine the uncertain parameters of the oil/gas relative permeability curves, including the two exponents of the extended Corey equation (N° and Ng), Sor and krge. The history match showed that kroe and Swir were experimentally achievable and were reliably interpreted. The remaining four parameters (i.e., Corey exponents, true residual oil saturation and gas endpoint relative permeability) were obtained from history matched simulations rather than from experiments. Based on our findings, a new correlation has been proposed to model the effect of temperature on two-phase gas/heavy oil relative permeability.","PeriodicalId":146458,"journal":{"name":"Day 1 Wed, March 16, 2022","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of Temperature on Gas/Oil Relative Permeability in Viscous Oil Reservoirs\",\"authors\":\"Saket Kumar, H. Sarma, B. Maini\",\"doi\":\"10.2118/208897-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Oil displacement tests were carried out in a 45-cm long sand-pack at temperatures ranging from 64 to 217 °C using a viscous oil (PAO-100), deionized water and nitrogen gas. It was found that the unsteady-state method was susceptible to several experimental artifacts in viscous oil systems due to a very adverse mobility ratio. However, despite such experimental artifacts, a careful analysis of the displacement data led to obtaining meaningful two-phase gas/oil relative permeability curves. These curves were used to assess the effect of temperature on gas/oil relative permeability in viscous oil systems.\\n We employed a new systematic algorithm to successfully implement a history matching scheme to infer the two-phase gas/heavy oil relative permeabilities from the core-flood data. We noted that at the end of the gas flooding, the \\\"final\\\" residual oil saturation still eluded us even after tens of pore volumes of gas injection. This rendered the experimentally determined endpoint gas relative permeability (krge) and Sor unreliable. In contrast, the irreducible water saturation (Swir) and the endpoint oil relative permeability (kroe) were experimentally achievable.\\n A history-matching technique was used to determine the uncertain parameters of the oil/gas relative permeability curves, including the two exponents of the extended Corey equation (N° and Ng), Sor and krge. The history match showed that kroe and Swir were experimentally achievable and were reliably interpreted. The remaining four parameters (i.e., Corey exponents, true residual oil saturation and gas endpoint relative permeability) were obtained from history matched simulations rather than from experiments. Based on our findings, a new correlation has been proposed to model the effect of temperature on two-phase gas/heavy oil relative permeability.\",\"PeriodicalId\":146458,\"journal\":{\"name\":\"Day 1 Wed, March 16, 2022\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Wed, March 16, 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/208897-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Wed, March 16, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/208897-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

驱油测试在45厘米长的砂包中进行,温度范围为64至217℃,使用粘性油(PAO-100)、去离子水和氮气。研究发现,在稠油系统中,非稳态方法由于流动性比非常不利,容易受到一些实验伪影的影响。然而,尽管存在这些实验误差,但对驱替数据的仔细分析可以获得有意义的两相气/油相对渗透率曲线。这些曲线用于评价温度对稠油体系中气/油相对渗透率的影响。我们采用了一种新的系统算法,成功地实现了历史匹配方案,从岩心驱油数据中推断出两相气/稠油相对渗透率。我们注意到,在气驱结束时,即使注入了几十个孔隙体积的气体,“最终”残余油饱和度仍然没有达到。这使得实验确定的端点气体相对渗透率(kge)和Sor不可靠。相比之下,不可还原水饱和度(Swir)和终点油相对渗透率(kroe)在实验上是可以实现的。采用历史拟合技术确定油气相对渗透率曲线的不确定参数,包括扩展Corey方程的两个指数(N°和Ng), Sor和krge。历史匹配表明,kroe和Swir在实验上是可以实现的,并且可以可靠地解释。其余4个参数(即Corey指数、真实残余油饱和度和天然气端点相对渗透率)是通过历史匹配模拟而非实验获得的。在此基础上,提出了温度对两相气/稠油相对渗透率影响的新关联模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Temperature on Gas/Oil Relative Permeability in Viscous Oil Reservoirs
Oil displacement tests were carried out in a 45-cm long sand-pack at temperatures ranging from 64 to 217 °C using a viscous oil (PAO-100), deionized water and nitrogen gas. It was found that the unsteady-state method was susceptible to several experimental artifacts in viscous oil systems due to a very adverse mobility ratio. However, despite such experimental artifacts, a careful analysis of the displacement data led to obtaining meaningful two-phase gas/oil relative permeability curves. These curves were used to assess the effect of temperature on gas/oil relative permeability in viscous oil systems. We employed a new systematic algorithm to successfully implement a history matching scheme to infer the two-phase gas/heavy oil relative permeabilities from the core-flood data. We noted that at the end of the gas flooding, the "final" residual oil saturation still eluded us even after tens of pore volumes of gas injection. This rendered the experimentally determined endpoint gas relative permeability (krge) and Sor unreliable. In contrast, the irreducible water saturation (Swir) and the endpoint oil relative permeability (kroe) were experimentally achievable. A history-matching technique was used to determine the uncertain parameters of the oil/gas relative permeability curves, including the two exponents of the extended Corey equation (N° and Ng), Sor and krge. The history match showed that kroe and Swir were experimentally achievable and were reliably interpreted. The remaining four parameters (i.e., Corey exponents, true residual oil saturation and gas endpoint relative permeability) were obtained from history matched simulations rather than from experiments. Based on our findings, a new correlation has been proposed to model the effect of temperature on two-phase gas/heavy oil relative permeability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Steam Additives to Reduce the Steam-Oil Ratio in SAGD: Experimental Analysis, Pilot Design, and Field Application Powering Offshore Installations with Wind Energy Quantification of Phase Behaviour and Physical Properties of Alkane Solvents/CO2/ Water/Heavy Oil Systems under Equilibrium and Nonequilibrium Conditions Profile Ultrasonic Velocity Measurements Performed on Slabbed Core: Implications for High-Resolution Permeability Prediction in Low-Permeability Rocks Holistic Real-Time Drilling Parameters Optimization Delivers Best-in-Class Drilling Performance and Preserves Bit Condition - A Case History from an Integrated Project in the Middle East
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1