全面召回,语言处理和软件工程

Zhe Yu, T. Menzies
{"title":"全面召回,语言处理和软件工程","authors":"Zhe Yu, T. Menzies","doi":"10.1145/3283812.3283818","DOIUrl":null,"url":null,"abstract":"A broad class of software engineering problems can be generalized as the \"total recall problem\". This short paper claims that identifying and exploring the total recall problems in software engineering is an important task with wide applicability. To make that case, we show that by applying and adapting the state of the art active learning and natural language processing algorithms for solving the total recall problem, two important software engineering tasks can also be addressed : (a) supporting large literature reviews and (b) identifying software security vulnerabilities. Furthermore, we conjecture that (c) test case prioritization and (d) static warning identification can also be generalized as and benefit from the total recall problem. The widespread applicability of \"total recall\" to software engineering suggests that there exists some underlying framework that encompasses not just natural language processing, but a wide range of important software engineering tasks.","PeriodicalId":231305,"journal":{"name":"Proceedings of the 4th ACM SIGSOFT International Workshop on NLP for Software Engineering","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Total recall, language processing, and software engineering\",\"authors\":\"Zhe Yu, T. Menzies\",\"doi\":\"10.1145/3283812.3283818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A broad class of software engineering problems can be generalized as the \\\"total recall problem\\\". This short paper claims that identifying and exploring the total recall problems in software engineering is an important task with wide applicability. To make that case, we show that by applying and adapting the state of the art active learning and natural language processing algorithms for solving the total recall problem, two important software engineering tasks can also be addressed : (a) supporting large literature reviews and (b) identifying software security vulnerabilities. Furthermore, we conjecture that (c) test case prioritization and (d) static warning identification can also be generalized as and benefit from the total recall problem. The widespread applicability of \\\"total recall\\\" to software engineering suggests that there exists some underlying framework that encompasses not just natural language processing, but a wide range of important software engineering tasks.\",\"PeriodicalId\":231305,\"journal\":{\"name\":\"Proceedings of the 4th ACM SIGSOFT International Workshop on NLP for Software Engineering\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 4th ACM SIGSOFT International Workshop on NLP for Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3283812.3283818\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th ACM SIGSOFT International Workshop on NLP for Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3283812.3283818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

一类广泛的软件工程问题可以概括为“完全召回问题”。本文认为识别和探索软件工程中的全召回问题是一项具有广泛适用性的重要任务。为了证明这一点,我们表明,通过应用和适应最先进的主动学习和自然语言处理算法来解决总召回问题,还可以解决两个重要的软件工程任务:(a)支持大型文献综述和(b)识别软件安全漏洞。此外,我们推测(c)测试用例优先级和(d)静态警告识别也可以推广为并受益于总召回问题。“全面召回”在软件工程中的广泛适用性表明,存在一些底层框架,不仅包含自然语言处理,还包含范围广泛的重要软件工程任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Total recall, language processing, and software engineering
A broad class of software engineering problems can be generalized as the "total recall problem". This short paper claims that identifying and exploring the total recall problems in software engineering is an important task with wide applicability. To make that case, we show that by applying and adapting the state of the art active learning and natural language processing algorithms for solving the total recall problem, two important software engineering tasks can also be addressed : (a) supporting large literature reviews and (b) identifying software security vulnerabilities. Furthermore, we conjecture that (c) test case prioritization and (d) static warning identification can also be generalized as and benefit from the total recall problem. The widespread applicability of "total recall" to software engineering suggests that there exists some underlying framework that encompasses not just natural language processing, but a wide range of important software engineering tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mining monitoring concerns implementation in Java-based software systems Learning from code with graphs (keynote) Two perspectives on software documentation quality in stack overflow Natural language processing (NLP) applied on issue trackers Towards understanding code readability and its impact on design quality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1