基于有效协同进化遗传算法的人脸定位

F. Hajati, C. Lucas, Yongsheng Gao
{"title":"基于有效协同进化遗传算法的人脸定位","authors":"F. Hajati, C. Lucas, Yongsheng Gao","doi":"10.1109/DICTA.2010.116","DOIUrl":null,"url":null,"abstract":"In this paper, a new method for face localization in color images, which is based on co-evolutionary systems, is introduced. The proposed method uses a co-evolutionary system to locate the eyes in a face image. The used coevolutionary system involves two genetic algorithm models. The first GA model searches for a solution in the given environment, and the second GA model searches for useful genetic information in the first GA model. In the next step, by using the location of eyes in image the parameters of face's bounding ellipse (center, orientation, major and minor axis) are computed. To evaluate and compare the proposed method with other methods, high order Pseudo Zernike Moments (PZM) are utilized to produce feature vectors and a Radial Basis Function (RBF) neural network is used as the classifier. Simulation results indicate that the speed and accuracy of the new system using the proposed face localization method which uses a co-evolutionary approach is higher than the system proposed in [10].","PeriodicalId":246460,"journal":{"name":"2010 International Conference on Digital Image Computing: Techniques and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Face Localization Using an Effective Co-evolutionary Genetic Algorithm\",\"authors\":\"F. Hajati, C. Lucas, Yongsheng Gao\",\"doi\":\"10.1109/DICTA.2010.116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new method for face localization in color images, which is based on co-evolutionary systems, is introduced. The proposed method uses a co-evolutionary system to locate the eyes in a face image. The used coevolutionary system involves two genetic algorithm models. The first GA model searches for a solution in the given environment, and the second GA model searches for useful genetic information in the first GA model. In the next step, by using the location of eyes in image the parameters of face's bounding ellipse (center, orientation, major and minor axis) are computed. To evaluate and compare the proposed method with other methods, high order Pseudo Zernike Moments (PZM) are utilized to produce feature vectors and a Radial Basis Function (RBF) neural network is used as the classifier. Simulation results indicate that the speed and accuracy of the new system using the proposed face localization method which uses a co-evolutionary approach is higher than the system proposed in [10].\",\"PeriodicalId\":246460,\"journal\":{\"name\":\"2010 International Conference on Digital Image Computing: Techniques and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Digital Image Computing: Techniques and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2010.116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2010.116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于协同进化系统的彩色图像人脸定位新方法。该方法使用协同进化系统来定位人脸图像中的眼睛。所使用的协同进化系统涉及两个遗传算法模型。第一个遗传算法模型在给定环境中搜索解,第二个遗传算法模型在第一个遗传算法模型中搜索有用的遗传信息。下一步,利用人眼在图像中的位置,计算人脸边界椭圆的中心、方向、长、短轴参数。为了与其他方法进行评价和比较,利用高阶伪泽尼克矩(PZM)产生特征向量,并使用径向基函数(RBF)神经网络作为分类器。仿真结果表明,采用协同进化方法的人脸定位方法的新系统的速度和精度高于[10]中提出的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Face Localization Using an Effective Co-evolutionary Genetic Algorithm
In this paper, a new method for face localization in color images, which is based on co-evolutionary systems, is introduced. The proposed method uses a co-evolutionary system to locate the eyes in a face image. The used coevolutionary system involves two genetic algorithm models. The first GA model searches for a solution in the given environment, and the second GA model searches for useful genetic information in the first GA model. In the next step, by using the location of eyes in image the parameters of face's bounding ellipse (center, orientation, major and minor axis) are computed. To evaluate and compare the proposed method with other methods, high order Pseudo Zernike Moments (PZM) are utilized to produce feature vectors and a Radial Basis Function (RBF) neural network is used as the classifier. Simulation results indicate that the speed and accuracy of the new system using the proposed face localization method which uses a co-evolutionary approach is higher than the system proposed in [10].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pulse Repetition Interval Modulation Recognition Using Symbolization Vessel Segmentation from Color Retinal Images with Varying Contrast and Central Reflex Properties A Novel Algorithm for Text Detection and Localization in Natural Scene Images Image Retrieval with a Visual Thesaurus Chromosome Classification Based on Wavelet Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1