深度网络数据集成中重复实体识别的整体解决方案

W. Liu, Xiaofeng Meng
{"title":"深度网络数据集成中重复实体识别的整体解决方案","authors":"W. Liu, Xiaofeng Meng","doi":"10.1109/SKG.2010.38","DOIUrl":null,"url":null,"abstract":"The proliferation of deep Web offers users a great opportunity to search high-quality information from Web. As a necessary step in deep Web data integration, the goal of duplicate entity identification is to discover the duplicate records from the integrated Web databases for further applications(e.g. price-comparison services). However, most of existing works address this issue only between two data sources, which are not practical to deep Web data integration systems. That is, one duplicate entity matcher trained over two specific Web databases cannot be applied to other Web databases. In addition, the cost of preparing the training set for n Web databases is C_n^2 times higher than that for two Web databases. In this paper, we propose a holistic solution to address the new challenges posed by deep Web, whose goal is to build one duplicate entity matcher over multiple Web databases. The extensive experiments on two domains show that the proposed solution is highly effective for deep Web data integration.","PeriodicalId":105513,"journal":{"name":"2010 Sixth International Conference on Semantics, Knowledge and Grids","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Holistic Solution for Duplicate Entity Identification in Deep Web Data Integration\",\"authors\":\"W. Liu, Xiaofeng Meng\",\"doi\":\"10.1109/SKG.2010.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proliferation of deep Web offers users a great opportunity to search high-quality information from Web. As a necessary step in deep Web data integration, the goal of duplicate entity identification is to discover the duplicate records from the integrated Web databases for further applications(e.g. price-comparison services). However, most of existing works address this issue only between two data sources, which are not practical to deep Web data integration systems. That is, one duplicate entity matcher trained over two specific Web databases cannot be applied to other Web databases. In addition, the cost of preparing the training set for n Web databases is C_n^2 times higher than that for two Web databases. In this paper, we propose a holistic solution to address the new challenges posed by deep Web, whose goal is to build one duplicate entity matcher over multiple Web databases. The extensive experiments on two domains show that the proposed solution is highly effective for deep Web data integration.\",\"PeriodicalId\":105513,\"journal\":{\"name\":\"2010 Sixth International Conference on Semantics, Knowledge and Grids\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Sixth International Conference on Semantics, Knowledge and Grids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SKG.2010.38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Sixth International Conference on Semantics, Knowledge and Grids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SKG.2010.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

深度网络的扩散为用户提供了从网络中搜索高质量信息的绝佳机会。作为深度Web数据集成的必要步骤,重复实体识别的目标是从集成的Web数据库中发现重复的记录,以便进一步应用(如:价格比较服务)。然而,现有的大多数工作只解决了两个数据源之间的问题,这对于深度Web数据集成系统来说是不实用的。也就是说,在两个特定Web数据库上训练的重复实体匹配器不能应用于其他Web数据库。另外,n个Web数据库的训练集准备成本比2个Web数据库的训练集准备成本高C_n^2倍。在本文中,我们提出了一个整体解决方案来解决深度网络带来的新挑战,其目标是在多个Web数据库上构建一个重复的实体匹配器。在两个领域的大量实验表明,该方案对深度Web数据集成是非常有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Holistic Solution for Duplicate Entity Identification in Deep Web Data Integration
The proliferation of deep Web offers users a great opportunity to search high-quality information from Web. As a necessary step in deep Web data integration, the goal of duplicate entity identification is to discover the duplicate records from the integrated Web databases for further applications(e.g. price-comparison services). However, most of existing works address this issue only between two data sources, which are not practical to deep Web data integration systems. That is, one duplicate entity matcher trained over two specific Web databases cannot be applied to other Web databases. In addition, the cost of preparing the training set for n Web databases is C_n^2 times higher than that for two Web databases. In this paper, we propose a holistic solution to address the new challenges posed by deep Web, whose goal is to build one duplicate entity matcher over multiple Web databases. The extensive experiments on two domains show that the proposed solution is highly effective for deep Web data integration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Service Semantic Link Network Discovery Based on Markov Structure Optimization Research on Processes I/O Performance in Container-level Virtualization Research on Ontology Based Semantic Service Middleware within Spatial Information System Data Dependency Based Application Description Model in Grid and Its Usage in Scientific Computing Multi-faceted Learning Paths Recommendation Via Semantic Linked Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1