{"title":"支持基于位置的近似关键字查询","authors":"Sattam Alsubaiee, Alexander Behm, Chen Li","doi":"10.1145/1869790.1869802","DOIUrl":null,"url":null,"abstract":"Many Web sites support keyword search on their spatial data, such as business listings and photos. In these systems, inconsistencies and errors can exist in both queries and the data. To bridge the gap between queries and data, it is important to support approximate keyword search on spatial data. In this paper we study how to answer such queries efficiently. We focus on a natural index structure that augments a tree-based spatial index with capabilities for approximate keyword search. We systematically study how to efficiently combine these two types of indexes, and how to search the resulting index to find answers. We develop three algorithms for constructing the index, successively improving the time and space efficiency by exploiting the textual and spatial properties of the data. We experimentally demonstrate the efficiency of our techniques on real, large datasets.","PeriodicalId":359068,"journal":{"name":"ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"Supporting location-based approximate-keyword queries\",\"authors\":\"Sattam Alsubaiee, Alexander Behm, Chen Li\",\"doi\":\"10.1145/1869790.1869802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many Web sites support keyword search on their spatial data, such as business listings and photos. In these systems, inconsistencies and errors can exist in both queries and the data. To bridge the gap between queries and data, it is important to support approximate keyword search on spatial data. In this paper we study how to answer such queries efficiently. We focus on a natural index structure that augments a tree-based spatial index with capabilities for approximate keyword search. We systematically study how to efficiently combine these two types of indexes, and how to search the resulting index to find answers. We develop three algorithms for constructing the index, successively improving the time and space efficiency by exploiting the textual and spatial properties of the data. We experimentally demonstrate the efficiency of our techniques on real, large datasets.\",\"PeriodicalId\":359068,\"journal\":{\"name\":\"ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1869790.1869802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1869790.1869802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Many Web sites support keyword search on their spatial data, such as business listings and photos. In these systems, inconsistencies and errors can exist in both queries and the data. To bridge the gap between queries and data, it is important to support approximate keyword search on spatial data. In this paper we study how to answer such queries efficiently. We focus on a natural index structure that augments a tree-based spatial index with capabilities for approximate keyword search. We systematically study how to efficiently combine these two types of indexes, and how to search the resulting index to find answers. We develop three algorithms for constructing the index, successively improving the time and space efficiency by exploiting the textual and spatial properties of the data. We experimentally demonstrate the efficiency of our techniques on real, large datasets.