{"title":"提出了利用深度强化学习优化LoRa/LoRaWAN网络性能的频谱散射控制方法","authors":"C. D. Bezerra, Antonio Oliveira-Jr, F. Vieira","doi":"10.5753/erigo.2021.18433","DOIUrl":null,"url":null,"abstract":"O número de dispositivos de Internet das Coisas (IoT) conectados cresce cada vez mais e tende a aumentar nos próximos anos, principalmente com a chegada das redes 5G. Isso resultará em um intenso tráfego de dados no sistema de comunicação, podendo prejudicar a qualidade de transmissão devido aos congestionamentos e perdas de pacote por colisão. O objetivo desse artigo e propor um método inteligente baseado em redes Deep Q Networks (DQN), onde o agente é treinado para aprender uma política de ações envolvendo parâmetros de modulação do protocolo LoRa, de forma que a conexão multiusuário seja otimizada. A metodologia de desenvolvimento desse artigo é por meio de simulações computacionais. Os resultados apontam para uma técnica de otimização e controle promissora.","PeriodicalId":125727,"journal":{"name":"Anais da IX Escola Regional de Informática de Goiás (ERI-GO 2021)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proposta de Controle de Espalhamento Espectral Utilizando Aprendizado por Reforço Profundo para Otimização do Desempenho de Redes LoRa/LoRaWAN\",\"authors\":\"C. D. Bezerra, Antonio Oliveira-Jr, F. Vieira\",\"doi\":\"10.5753/erigo.2021.18433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"O número de dispositivos de Internet das Coisas (IoT) conectados cresce cada vez mais e tende a aumentar nos próximos anos, principalmente com a chegada das redes 5G. Isso resultará em um intenso tráfego de dados no sistema de comunicação, podendo prejudicar a qualidade de transmissão devido aos congestionamentos e perdas de pacote por colisão. O objetivo desse artigo e propor um método inteligente baseado em redes Deep Q Networks (DQN), onde o agente é treinado para aprender uma política de ações envolvendo parâmetros de modulação do protocolo LoRa, de forma que a conexão multiusuário seja otimizada. A metodologia de desenvolvimento desse artigo é por meio de simulações computacionais. Os resultados apontam para uma técnica de otimização e controle promissora.\",\"PeriodicalId\":125727,\"journal\":{\"name\":\"Anais da IX Escola Regional de Informática de Goiás (ERI-GO 2021)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais da IX Escola Regional de Informática de Goiás (ERI-GO 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/erigo.2021.18433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais da IX Escola Regional de Informática de Goiás (ERI-GO 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/erigo.2021.18433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Proposta de Controle de Espalhamento Espectral Utilizando Aprendizado por Reforço Profundo para Otimização do Desempenho de Redes LoRa/LoRaWAN
O número de dispositivos de Internet das Coisas (IoT) conectados cresce cada vez mais e tende a aumentar nos próximos anos, principalmente com a chegada das redes 5G. Isso resultará em um intenso tráfego de dados no sistema de comunicação, podendo prejudicar a qualidade de transmissão devido aos congestionamentos e perdas de pacote por colisão. O objetivo desse artigo e propor um método inteligente baseado em redes Deep Q Networks (DQN), onde o agente é treinado para aprender uma política de ações envolvendo parâmetros de modulação do protocolo LoRa, de forma que a conexão multiusuário seja otimizada. A metodologia de desenvolvimento desse artigo é por meio de simulações computacionais. Os resultados apontam para uma técnica de otimização e controle promissora.