用于自动代码更新的AI

Salwa Alamir, Petr Babkin, N. Navarro, Sameena Shah
{"title":"用于自动代码更新的AI","authors":"Salwa Alamir, Petr Babkin, N. Navarro, Sameena Shah","doi":"10.1145/3510457.3513073","DOIUrl":null,"url":null,"abstract":"Most modern code bases extensively rely on external libraries to provide robust functionality out of the box. When these libraries are updated they can sometimes introduce breaking changes in the process, which require extensive developer maintenance. To mitigate this we propose to use artificial intelligence to parse the text of release notes to capture code deprecations in structured form. This, in turn, enables us to develop an IDE plugin that can automatically detect deprecated library usages in live code bases and even suggest recommended fixes. We evaluated our system on over 30 internal projects within J.P. Morgan.","PeriodicalId":119790,"journal":{"name":"2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)","volume":"121 19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"AI for Automated Code Updates\",\"authors\":\"Salwa Alamir, Petr Babkin, N. Navarro, Sameena Shah\",\"doi\":\"10.1145/3510457.3513073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most modern code bases extensively rely on external libraries to provide robust functionality out of the box. When these libraries are updated they can sometimes introduce breaking changes in the process, which require extensive developer maintenance. To mitigate this we propose to use artificial intelligence to parse the text of release notes to capture code deprecations in structured form. This, in turn, enables us to develop an IDE plugin that can automatically detect deprecated library usages in live code bases and even suggest recommended fixes. We evaluated our system on over 30 internal projects within J.P. Morgan.\",\"PeriodicalId\":119790,\"journal\":{\"name\":\"2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)\",\"volume\":\"121 19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3510457.3513073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3510457.3513073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

大多数现代代码库广泛依赖外部库来提供开箱即用的健壮功能。当这些库更新时,它们有时会在流程中引入破坏性的更改,这需要大量的开发人员维护。为了缓解这个问题,我们建议使用人工智能来解析发行说明的文本,以结构化的形式捕获代码弃用。反过来,这使我们能够开发一个IDE插件,它可以自动检测实时代码库中不推荐的库用法,甚至建议修复。我们在摩根大通的30多个内部项目中评估了我们的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AI for Automated Code Updates
Most modern code bases extensively rely on external libraries to provide robust functionality out of the box. When these libraries are updated they can sometimes introduce breaking changes in the process, which require extensive developer maintenance. To mitigate this we propose to use artificial intelligence to parse the text of release notes to capture code deprecations in structured form. This, in turn, enables us to develop an IDE plugin that can automatically detect deprecated library usages in live code bases and even suggest recommended fixes. We evaluated our system on over 30 internal projects within J.P. Morgan.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Industry's Cry for Tools that Support Large-Scale Refactoring Code Reviewer Recommendation in Tencent: Practice, Challenge, and Direction* What's bothering developers in code review? The Impact of Flaky Tests on Historical Test Prioritization on Chrome Surveying the Developer Experience of Flaky Tests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1