基于支持向量机的异形纤维分类新算法

Xiaotao Xu, L. Yao, Yan Wan
{"title":"基于支持向量机的异形纤维分类新算法","authors":"Xiaotao Xu, L. Yao, Yan Wan","doi":"10.1109/IWISA.2010.5473403","DOIUrl":null,"url":null,"abstract":"Fiber classification, especially shaped fiber classifi-cation, is always an important area in textile analysis. Traditional manual or semi-manual ways to classify different type of fibers will take a lot of time. Support Vector Machine (SVM) is an efficient and robust classifier that will fulfill the requirement on fiber classification. In this paper, a shaped fiber classification method based on Support Vector Machine (SVM) and Kernel Principal Component Analysis (KPCA) is proposed. The shaped fiber's features extracted by KPCA are used to train and test SVM for obtain suitable parameters of SVM. The experimental results show that our presented algorithm is efficient and robust on classifying shaped fibers.","PeriodicalId":298764,"journal":{"name":"2010 2nd International Workshop on Intelligent Systems and Applications","volume":"212 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A New Shaped Fiber Classification Algorithm Based on SVM\",\"authors\":\"Xiaotao Xu, L. Yao, Yan Wan\",\"doi\":\"10.1109/IWISA.2010.5473403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fiber classification, especially shaped fiber classifi-cation, is always an important area in textile analysis. Traditional manual or semi-manual ways to classify different type of fibers will take a lot of time. Support Vector Machine (SVM) is an efficient and robust classifier that will fulfill the requirement on fiber classification. In this paper, a shaped fiber classification method based on Support Vector Machine (SVM) and Kernel Principal Component Analysis (KPCA) is proposed. The shaped fiber's features extracted by KPCA are used to train and test SVM for obtain suitable parameters of SVM. The experimental results show that our presented algorithm is efficient and robust on classifying shaped fibers.\",\"PeriodicalId\":298764,\"journal\":{\"name\":\"2010 2nd International Workshop on Intelligent Systems and Applications\",\"volume\":\"212 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Workshop on Intelligent Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWISA.2010.5473403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Workshop on Intelligent Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWISA.2010.5473403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

纤维分类,特别是异形纤维分类一直是纺织品分析中的一个重要领域。传统的手工或半手工的方法来分类不同类型的纤维将花费大量的时间。支持向量机(SVM)是一种高效、鲁棒的分类器,可以满足纤维分类的要求。提出了一种基于支持向量机(SVM)和核主成分分析(KPCA)的异形纤维分类方法。利用KPCA提取的异形纤维特征对支持向量机进行训练和测试,得到合适的支持向量机参数。实验结果表明,该算法对异形纤维分类具有较好的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Shaped Fiber Classification Algorithm Based on SVM
Fiber classification, especially shaped fiber classifi-cation, is always an important area in textile analysis. Traditional manual or semi-manual ways to classify different type of fibers will take a lot of time. Support Vector Machine (SVM) is an efficient and robust classifier that will fulfill the requirement on fiber classification. In this paper, a shaped fiber classification method based on Support Vector Machine (SVM) and Kernel Principal Component Analysis (KPCA) is proposed. The shaped fiber's features extracted by KPCA are used to train and test SVM for obtain suitable parameters of SVM. The experimental results show that our presented algorithm is efficient and robust on classifying shaped fibers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How to Display the Data from Database by ListView on Android An Improved Genetic Algorithm and Its Blending Application with Neural Network A Study for Important Criteria of Feature Selection in Text Categorization A Hierarchical Classification Model Based on Granular Computing A Study of Improving Apriori Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1