基于广义极值分布的高分辨率SAR图像建模

J. Bai, Yiqiong Li
{"title":"基于广义极值分布的高分辨率SAR图像建模","authors":"J. Bai, Yiqiong Li","doi":"10.1109/IMCEC.2016.7867350","DOIUrl":null,"url":null,"abstract":"It is very important to develop precise statistical model for the high-resolution SAR images. The accurate distribution modeling of SAR images is the main contribution of this paper. In this paper, we study the GEV distribution model which can be used for modeling high-resolution SAR images, and introduce the properties and parameter estimation methods. In order to quantitatively assess the fitting result, we adopt the Kullback-Leibler divergence and the mean squared error as a similarity measurement. Experiment results with high-resolution SAR images indicate that the proposed GEV model can achieve satisfactory performance improvement in describing the statistical distribution of SAR image, not only in the homogeneous area, but also in the heterogeneous area.","PeriodicalId":218222,"journal":{"name":"2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling high-resolution SAR images with generalized extreme value distribution\",\"authors\":\"J. Bai, Yiqiong Li\",\"doi\":\"10.1109/IMCEC.2016.7867350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is very important to develop precise statistical model for the high-resolution SAR images. The accurate distribution modeling of SAR images is the main contribution of this paper. In this paper, we study the GEV distribution model which can be used for modeling high-resolution SAR images, and introduce the properties and parameter estimation methods. In order to quantitatively assess the fitting result, we adopt the Kullback-Leibler divergence and the mean squared error as a similarity measurement. Experiment results with high-resolution SAR images indicate that the proposed GEV model can achieve satisfactory performance improvement in describing the statistical distribution of SAR image, not only in the homogeneous area, but also in the heterogeneous area.\",\"PeriodicalId\":218222,\"journal\":{\"name\":\"2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMCEC.2016.7867350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCEC.2016.7867350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

建立精确的高分辨率SAR图像统计模型具有十分重要的意义。对SAR图像的精确分布建模是本文的主要贡献。本文研究了可用于高分辨率SAR图像建模的GEV分布模型,并介绍了其性质和参数估计方法。为了定量评价拟合结果,我们采用Kullback-Leibler散度和均方误差作为相似性度量。高分辨率SAR图像的实验结果表明,所提出的GEV模型在描述均匀区域和非均匀区域SAR图像的统计分布方面都取得了令人满意的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling high-resolution SAR images with generalized extreme value distribution
It is very important to develop precise statistical model for the high-resolution SAR images. The accurate distribution modeling of SAR images is the main contribution of this paper. In this paper, we study the GEV distribution model which can be used for modeling high-resolution SAR images, and introduce the properties and parameter estimation methods. In order to quantitatively assess the fitting result, we adopt the Kullback-Leibler divergence and the mean squared error as a similarity measurement. Experiment results with high-resolution SAR images indicate that the proposed GEV model can achieve satisfactory performance improvement in describing the statistical distribution of SAR image, not only in the homogeneous area, but also in the heterogeneous area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High performance path following for UAV based on advanced vector field guidance law Design of autonomous underwater vehicle positioning system Temperature field simulation of herringbone grooved bearing based on FLUENT software Docker based overlay network performance evaluation in large scale streaming system Multi-channel automatic calibration system of pressure sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1