基于马尔可夫链蒙特卡罗方法的用户通用融合模型在线签名验证

S. Kinoshita, D. Muramatsu, T. Matsumoto
{"title":"基于马尔可夫链蒙特卡罗方法的用户通用融合模型在线签名验证","authors":"S. Kinoshita, D. Muramatsu, T. Matsumoto","doi":"10.1109/ISPACS.2006.364911","DOIUrl":null,"url":null,"abstract":"Personal authentication is becoming increasingly important. Biometrics, that is, the use of biological information, is one of the most promising techniques for this application. This paper proposes an online signature verification system. A serious problem in online signature verification is the difficulty of collecting enough signature data to generate a reliable model. In this paper, we propose a user-generic fusion model to resolve this problem. In the model generation, we use available datasets composed of genuine and forged signatures of many signers. The model's parameters are trained using the Markov chain Monte Carlo method. We report experimental results of our proposed algorithm using two public databases","PeriodicalId":178644,"journal":{"name":"2006 International Symposium on Intelligent Signal Processing and Communications","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Online Signature Verification based on User-generic Fusion Model with Markov Chain Monte Carlo Method\",\"authors\":\"S. Kinoshita, D. Muramatsu, T. Matsumoto\",\"doi\":\"10.1109/ISPACS.2006.364911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Personal authentication is becoming increasingly important. Biometrics, that is, the use of biological information, is one of the most promising techniques for this application. This paper proposes an online signature verification system. A serious problem in online signature verification is the difficulty of collecting enough signature data to generate a reliable model. In this paper, we propose a user-generic fusion model to resolve this problem. In the model generation, we use available datasets composed of genuine and forged signatures of many signers. The model's parameters are trained using the Markov chain Monte Carlo method. We report experimental results of our proposed algorithm using two public databases\",\"PeriodicalId\":178644,\"journal\":{\"name\":\"2006 International Symposium on Intelligent Signal Processing and Communications\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Symposium on Intelligent Signal Processing and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS.2006.364911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Symposium on Intelligent Signal Processing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS.2006.364911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

个人身份验证变得越来越重要。生物识别技术,即生物信息的使用,是这一应用中最有前途的技术之一。本文提出了一种在线签名验证系统。在线签名验证的一个严重问题是难以收集足够的签名数据来生成可靠的模型。在本文中,我们提出了一个用户通用的融合模型来解决这个问题。在模型生成中,我们使用了由许多签名者的真实和伪造签名组成的可用数据集。采用马尔可夫链蒙特卡罗方法对模型参数进行训练。我们报告了使用两个公共数据库的实验结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Online Signature Verification based on User-generic Fusion Model with Markov Chain Monte Carlo Method
Personal authentication is becoming increasingly important. Biometrics, that is, the use of biological information, is one of the most promising techniques for this application. This paper proposes an online signature verification system. A serious problem in online signature verification is the difficulty of collecting enough signature data to generate a reliable model. In this paper, we propose a user-generic fusion model to resolve this problem. In the model generation, we use available datasets composed of genuine and forged signatures of many signers. The model's parameters are trained using the Markov chain Monte Carlo method. We report experimental results of our proposed algorithm using two public databases
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lossy Strict Multilevel Successive Elimination Algorithm for Fast Motion Estimation A Subpixel Image Matching Technique Using Phase-Only Correlation Phase Unwrapping of Self-mixing Signals Observed in Optical Feedback Interferometry for Displacement Measurement A Low-Power and Low-Noise Amplifier for 3-5GHz UWB Applications Automatic Image Annotation based-on Rough Set Theory with Visual Keys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1