基于NetFlow的模型驱动网络监控在威胁检测中的应用

Daniel Gónzalez-Sánchez, I. D. Martinez-Casanueva, A. Pastor, Luis Bellido Triana, Cristina Pinar Muñoz Zamarro, Alejandro Antonio Moreno Sancho, David Fernández Cambronero, Diego R. López
{"title":"基于NetFlow的模型驱动网络监控在威胁检测中的应用","authors":"Daniel Gónzalez-Sánchez, I. D. Martinez-Casanueva, A. Pastor, Luis Bellido Triana, Cristina Pinar Muñoz Zamarro, Alejandro Antonio Moreno Sancho, David Fernández Cambronero, Diego R. López","doi":"10.1109/NetSoft54395.2022.9844107","DOIUrl":null,"url":null,"abstract":"In recent years, several research works have proposed the analysis of network flow information using machine learning in order to detect threats or anomalous activities. In this sense, NetFlow-based systems stand out as one of the main sources of network flow information. In these systems, NetFlow collectors provide the flow monitoring information to be analyzed, but the particular information structure and format provided by different collector implementations is a recurring problem. In this paper, a new YANG data model is proposed as a standard model to use NetFlow-based monitoring data. In order to validate the proposal, a NetFlow collector incorporating the proposed NetFlow YANG model has been developed, to be integrated in a network scenario in which network flows are analyzed to detect malicious cryptomining activity. This collector extends an existing one, and provides design patterns to incorporate other existing collectors into this common data model. Our results show how, by using the YANG modeling language, network flow information can be handled and aggregated in a formal and unified way that provides flexibility and facilitates data analysis applied to threat detection.","PeriodicalId":125799,"journal":{"name":"2022 IEEE 8th International Conference on Network Softwarization (NetSoft)","volume":"9 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Model-Driven Network Monitoring Using NetFlow Applied to Threat Detection\",\"authors\":\"Daniel Gónzalez-Sánchez, I. D. Martinez-Casanueva, A. Pastor, Luis Bellido Triana, Cristina Pinar Muñoz Zamarro, Alejandro Antonio Moreno Sancho, David Fernández Cambronero, Diego R. López\",\"doi\":\"10.1109/NetSoft54395.2022.9844107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, several research works have proposed the analysis of network flow information using machine learning in order to detect threats or anomalous activities. In this sense, NetFlow-based systems stand out as one of the main sources of network flow information. In these systems, NetFlow collectors provide the flow monitoring information to be analyzed, but the particular information structure and format provided by different collector implementations is a recurring problem. In this paper, a new YANG data model is proposed as a standard model to use NetFlow-based monitoring data. In order to validate the proposal, a NetFlow collector incorporating the proposed NetFlow YANG model has been developed, to be integrated in a network scenario in which network flows are analyzed to detect malicious cryptomining activity. This collector extends an existing one, and provides design patterns to incorporate other existing collectors into this common data model. Our results show how, by using the YANG modeling language, network flow information can be handled and aggregated in a formal and unified way that provides flexibility and facilitates data analysis applied to threat detection.\",\"PeriodicalId\":125799,\"journal\":{\"name\":\"2022 IEEE 8th International Conference on Network Softwarization (NetSoft)\",\"volume\":\"9 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 8th International Conference on Network Softwarization (NetSoft)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NetSoft54395.2022.9844107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 8th International Conference on Network Softwarization (NetSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NetSoft54395.2022.9844107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,一些研究工作提出了使用机器学习分析网络流量信息以检测威胁或异常活动的方法。从这个意义上说,基于netflow的系统是网络流量信息的主要来源之一。在这些系统中,NetFlow收集器提供要分析的流量监控信息,但是不同收集器实现提供的特定信息结构和格式是一个反复出现的问题。本文提出了一种新的YANG数据模型,作为使用基于netflow的监测数据的标准模型。为了验证该建议,已经开发了一个包含所建议的NetFlow YANG模型的NetFlow收集器,将其集成到网络场景中,分析网络流以检测恶意加密挖掘活动。此收集器扩展了现有收集器,并提供了将其他现有收集器合并到此公共数据模型中的设计模式。我们的研究结果表明,通过使用YANG建模语言,网络流信息可以以一种正式和统一的方式处理和聚合,从而提供灵活性并促进应用于威胁检测的数据分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model-Driven Network Monitoring Using NetFlow Applied to Threat Detection
In recent years, several research works have proposed the analysis of network flow information using machine learning in order to detect threats or anomalous activities. In this sense, NetFlow-based systems stand out as one of the main sources of network flow information. In these systems, NetFlow collectors provide the flow monitoring information to be analyzed, but the particular information structure and format provided by different collector implementations is a recurring problem. In this paper, a new YANG data model is proposed as a standard model to use NetFlow-based monitoring data. In order to validate the proposal, a NetFlow collector incorporating the proposed NetFlow YANG model has been developed, to be integrated in a network scenario in which network flows are analyzed to detect malicious cryptomining activity. This collector extends an existing one, and provides design patterns to incorporate other existing collectors into this common data model. Our results show how, by using the YANG modeling language, network flow information can be handled and aggregated in a formal and unified way that provides flexibility and facilitates data analysis applied to threat detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flexible Measurement Testbed for Evaluating Time-Sensitive Networking in Industrial Automation Applications Latency-aware Topology Discovery in SDN-based Time-Sensitive Networks NLP4: An Architecture for Intent-Driven Data Plane Programmability CHIMA: a Framework for Network Services Deployment and Performance Assurance Encrypted Network Traffic Classification in SDN using Self-supervised Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1