基于关联的支持向量机在文盲数据集中的性能

Indra Gunawan, Triyanna Widyaningtyas, A. Wibawa, Haviluddin, Darusalam Darusalam, A. Pranolo
{"title":"基于关联的支持向量机在文盲数据集中的性能","authors":"Indra Gunawan, Triyanna Widyaningtyas, A. Wibawa, Haviluddin, Darusalam Darusalam, A. Pranolo","doi":"10.1109/EIConCIT.2018.8878576","DOIUrl":null,"url":null,"abstract":"SVM method performs a non-linear mapping of original data space into a high-dimensional feature space. The construction of linear discrimination function is useful for replacing the non-linear function in the original data space. This paper aims to efficiently explore the accuracy of SVM with the feature selection method. The selected feature selection method is Correlation-based Feature Selection (CFS), due to the approach’s simplicity and speed. This research used an illiteracy rate dataset in Indonesia. The research result showed that the optimised method has overcome the original SVM, with 94 % of accuracy.","PeriodicalId":424909,"journal":{"name":"2018 2nd East Indonesia Conference on Computer and Information Technology (EIConCIT)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Performance of Correlation-Based Support Vector Machine in Illiteracy Dataset\",\"authors\":\"Indra Gunawan, Triyanna Widyaningtyas, A. Wibawa, Haviluddin, Darusalam Darusalam, A. Pranolo\",\"doi\":\"10.1109/EIConCIT.2018.8878576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SVM method performs a non-linear mapping of original data space into a high-dimensional feature space. The construction of linear discrimination function is useful for replacing the non-linear function in the original data space. This paper aims to efficiently explore the accuracy of SVM with the feature selection method. The selected feature selection method is Correlation-based Feature Selection (CFS), due to the approach’s simplicity and speed. This research used an illiteracy rate dataset in Indonesia. The research result showed that the optimised method has overcome the original SVM, with 94 % of accuracy.\",\"PeriodicalId\":424909,\"journal\":{\"name\":\"2018 2nd East Indonesia Conference on Computer and Information Technology (EIConCIT)\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 2nd East Indonesia Conference on Computer and Information Technology (EIConCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EIConCIT.2018.8878576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 2nd East Indonesia Conference on Computer and Information Technology (EIConCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIConCIT.2018.8878576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

支持向量机方法将原始数据空间非线性映射到高维特征空间。线性判别函数的构造有助于替换原始数据空间中的非线性函数。本文旨在利用特征选择方法有效地探索支持向量机的准确率。所选择的特征选择方法是基于关联的特征选择(CFS),由于该方法的简单和速度。这项研究使用了印度尼西亚的文盲率数据集。研究结果表明,优化后的方法克服了原来的支持向量机,准确率达到94%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Performance of Correlation-Based Support Vector Machine in Illiteracy Dataset
SVM method performs a non-linear mapping of original data space into a high-dimensional feature space. The construction of linear discrimination function is useful for replacing the non-linear function in the original data space. This paper aims to efficiently explore the accuracy of SVM with the feature selection method. The selected feature selection method is Correlation-based Feature Selection (CFS), due to the approach’s simplicity and speed. This research used an illiteracy rate dataset in Indonesia. The research result showed that the optimised method has overcome the original SVM, with 94 % of accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental Study on Zoning, Histogram, and Structural Methods to Classify Sundanese Characters from Handwriting Medicine Stock Forecasting Using Least Square Method Sentiment Analysis of Product Reviews using Naive Bayes Algorithm: A Case Study [EIConCIT 2018 Cover Page] Keynote Speech 3 Internet of Things (IoT) Technology For Star Fruit Plantation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1