{"title":"SaaS业务平台工作负载的大小和配置分析","authors":"R. Ganesan, S. Sarkar, Akshay Narayan","doi":"10.1109/CLOUD.2012.73","DOIUrl":null,"url":null,"abstract":"Sharing of physical infrastructure using virtualization presents an opportunity to improve the overall resource utilization. It is extremely important for a Software as a Service (SaaS) provider to understand the characteristics of the business application workload in order to size and place the virtual machine (VM) containing the application. A typical business application has a multi-tier architecture and the application workload is often predictable. Using the knowledge of the application architecture and statistical analysis of the workload, one can obtain an appropriate capacity and a good placement strategy for the corresponding VM. In this paper we propose a tool iCirrus-WoP that determines VM capacity and VM collocation possibilities for a given set of application workloads. We perform an empirical analysis of the approach on a set of business application workloads obtained from geographically distributed data centers. The iCirrus-WoP tool determines the fixed reserved capacity and a shared capacity of a VM which it can share with another collocated VM. Based on the workload variation, the tool determines if the VM should be statically allocated or needs a dynamic placement. To determine the collocation possibility, iCirrus-WoP performs a peak utilization analysis of the workloads. The empirical analysis reveals the possibility of collocating applications running in different time-zones. The VM capacity that the tool recommends, show a possibility of improving the overall utilization of the infrastructure by more than 70% if they are appropriately collocated.","PeriodicalId":214084,"journal":{"name":"2012 IEEE Fifth International Conference on Cloud Computing","volume":"63 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Analysis of SaaS Business Platform Workloads for Sizing and Collocation\",\"authors\":\"R. Ganesan, S. Sarkar, Akshay Narayan\",\"doi\":\"10.1109/CLOUD.2012.73\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sharing of physical infrastructure using virtualization presents an opportunity to improve the overall resource utilization. It is extremely important for a Software as a Service (SaaS) provider to understand the characteristics of the business application workload in order to size and place the virtual machine (VM) containing the application. A typical business application has a multi-tier architecture and the application workload is often predictable. Using the knowledge of the application architecture and statistical analysis of the workload, one can obtain an appropriate capacity and a good placement strategy for the corresponding VM. In this paper we propose a tool iCirrus-WoP that determines VM capacity and VM collocation possibilities for a given set of application workloads. We perform an empirical analysis of the approach on a set of business application workloads obtained from geographically distributed data centers. The iCirrus-WoP tool determines the fixed reserved capacity and a shared capacity of a VM which it can share with another collocated VM. Based on the workload variation, the tool determines if the VM should be statically allocated or needs a dynamic placement. To determine the collocation possibility, iCirrus-WoP performs a peak utilization analysis of the workloads. The empirical analysis reveals the possibility of collocating applications running in different time-zones. The VM capacity that the tool recommends, show a possibility of improving the overall utilization of the infrastructure by more than 70% if they are appropriately collocated.\",\"PeriodicalId\":214084,\"journal\":{\"name\":\"2012 IEEE Fifth International Conference on Cloud Computing\",\"volume\":\"63 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Fifth International Conference on Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLOUD.2012.73\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Fifth International Conference on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD.2012.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of SaaS Business Platform Workloads for Sizing and Collocation
Sharing of physical infrastructure using virtualization presents an opportunity to improve the overall resource utilization. It is extremely important for a Software as a Service (SaaS) provider to understand the characteristics of the business application workload in order to size and place the virtual machine (VM) containing the application. A typical business application has a multi-tier architecture and the application workload is often predictable. Using the knowledge of the application architecture and statistical analysis of the workload, one can obtain an appropriate capacity and a good placement strategy for the corresponding VM. In this paper we propose a tool iCirrus-WoP that determines VM capacity and VM collocation possibilities for a given set of application workloads. We perform an empirical analysis of the approach on a set of business application workloads obtained from geographically distributed data centers. The iCirrus-WoP tool determines the fixed reserved capacity and a shared capacity of a VM which it can share with another collocated VM. Based on the workload variation, the tool determines if the VM should be statically allocated or needs a dynamic placement. To determine the collocation possibility, iCirrus-WoP performs a peak utilization analysis of the workloads. The empirical analysis reveals the possibility of collocating applications running in different time-zones. The VM capacity that the tool recommends, show a possibility of improving the overall utilization of the infrastructure by more than 70% if they are appropriately collocated.