{"title":"芯片多处理器的邻近相干性","authors":"Nick Barrow-Williams","doi":"10.1145/1854273.1854293","DOIUrl":null,"url":null,"abstract":"Many-core architectures provide an efficient way of harnessing the increasing numbers of transistors available in modern fabrication processes. While they are similar to multi-node systems, they exhibit different communication latency and storage characteristics, providing new design opportunities that were previously not feasible. Traditional cache coherence protocols, although often used in many-core designs, have been developed in the context of multi-node systems. As such, they seldom take advantage of the new possibilities that many-core architectures offer. We propose Proximity Coherence, a scheme in which L1 load misses are optimistically forwarded to nearby caches via new dedicated links rather than always being indirected via a directory structure. Such an optimization is made possible by the comparable cost of local cache accesses with the use of on-chip network resources. Coherency is maintained using lightweight graph structures embedded in the L1 caches. We compare our Proximity Coherence protocol to an existing directory-based MESI protocol using full-system simulations of a 32 core system. Our extension lowers the latency of L1 cache load misses by up to 32% while reducing the bytes transferred on the global on-chip interconnect by up to 19% for a range of parallel benchmarks. Employing Proximity Coherence provides execution time improvements of up to 13%, reduces cache hierarchy energy consumption by up to 30% and delivers a more efficient solution to the challenge of coherence in chip multiprocessors.","PeriodicalId":422461,"journal":{"name":"2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"Proximity coherence for chip multiprocessors\",\"authors\":\"Nick Barrow-Williams\",\"doi\":\"10.1145/1854273.1854293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many-core architectures provide an efficient way of harnessing the increasing numbers of transistors available in modern fabrication processes. While they are similar to multi-node systems, they exhibit different communication latency and storage characteristics, providing new design opportunities that were previously not feasible. Traditional cache coherence protocols, although often used in many-core designs, have been developed in the context of multi-node systems. As such, they seldom take advantage of the new possibilities that many-core architectures offer. We propose Proximity Coherence, a scheme in which L1 load misses are optimistically forwarded to nearby caches via new dedicated links rather than always being indirected via a directory structure. Such an optimization is made possible by the comparable cost of local cache accesses with the use of on-chip network resources. Coherency is maintained using lightweight graph structures embedded in the L1 caches. We compare our Proximity Coherence protocol to an existing directory-based MESI protocol using full-system simulations of a 32 core system. Our extension lowers the latency of L1 cache load misses by up to 32% while reducing the bytes transferred on the global on-chip interconnect by up to 19% for a range of parallel benchmarks. Employing Proximity Coherence provides execution time improvements of up to 13%, reduces cache hierarchy energy consumption by up to 30% and delivers a more efficient solution to the challenge of coherence in chip multiprocessors.\",\"PeriodicalId\":422461,\"journal\":{\"name\":\"2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1854273.1854293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1854273.1854293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Many-core architectures provide an efficient way of harnessing the increasing numbers of transistors available in modern fabrication processes. While they are similar to multi-node systems, they exhibit different communication latency and storage characteristics, providing new design opportunities that were previously not feasible. Traditional cache coherence protocols, although often used in many-core designs, have been developed in the context of multi-node systems. As such, they seldom take advantage of the new possibilities that many-core architectures offer. We propose Proximity Coherence, a scheme in which L1 load misses are optimistically forwarded to nearby caches via new dedicated links rather than always being indirected via a directory structure. Such an optimization is made possible by the comparable cost of local cache accesses with the use of on-chip network resources. Coherency is maintained using lightweight graph structures embedded in the L1 caches. We compare our Proximity Coherence protocol to an existing directory-based MESI protocol using full-system simulations of a 32 core system. Our extension lowers the latency of L1 cache load misses by up to 32% while reducing the bytes transferred on the global on-chip interconnect by up to 19% for a range of parallel benchmarks. Employing Proximity Coherence provides execution time improvements of up to 13%, reduces cache hierarchy energy consumption by up to 30% and delivers a more efficient solution to the challenge of coherence in chip multiprocessors.